首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小尺度群桩应用广泛,一直是学者研究的重点,小尺度有别于大尺度桩柱,由于桩柱周围存在漩涡的脱落,使得受力特性复杂。以往的研究过程中,波浪主要采用单向不规则波浪,并且试验模型多以两桩或三桩组成的群桩结构为主,桩数相对较少。多向不规则波与群桩结构的作用特点有别于单向不规则波且研究较少。通过物理模型试验,针对多向不规则波对于9桩桩排群桩结构的作用进行了研究。首先综合考虑KC1/3数和相对桩径的影响,提出以参数KCLD 1/3数来衡量群桩的效应,并分析了正向力与横向力随着参数KCLD 1/3数和相对桩距的变化关系,研究了群桩中不同桩位桩柱波浪力的变化规律和方向分布宽度对于群桩波浪力的影响。研究结果表明,群桩中各桩的正向力随着方向分布标准差的增大而减小,而横向力在相对桩距较大时随着方向分布标准差的增大而增大,同时群桩中不同位置桩上的波浪力具有较大的差异。  相似文献   

2.
Quadrant front face pile supported breakwater is a combination of semicircular and closely spaced pile breakwaters which couples the advantages of these two types. This type of structure consists of two parts. The bottom portion consists of closely spaced piles and the top portion consists of a quadrant solid front face on the seaside. The leeward side of the top portion with a vertical face would facilitate the berthing of vessels. An experimental investigation on this breakwater model in a wave flume is carried out for three water depths. For each water depth, three different spacings between the piles were adopted for the investigation. The dynamic pressures exerted along the quadrant front face due to regular waves were measured. The variation of dimensionless pressures with respect to scattering parameter for different gap ratio (spacing between the piles/diameter of pile) and for relative pile depth (water depth/pile height) are presented and discussed. In addition, the dimensionless total forces exerted on the breakwater model as well as its reflection characteristics as a function of scattering parameter are reported.  相似文献   

3.
Behavior of Pile Group with Elevated Cap Subjected to Cyclic Lateral Loads   总被引:1,自引:1,他引:0  
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

4.
The inline and lift forces on bipiles in parallel array induced by both irregular waves and currents were investigated experimentally in this paper. The characteristics in both time and frequency domains of inline, lift and resultant forces as well were analyzed. The grouping effect coefficients of inline and resultant forces on two piles related to KC number and relative spacing parameters are given. A comparison of the magnitude and direction of resultant forces on two piles in parallel array with the corresponding values for single cylinder is also made.  相似文献   

5.
Uplift capacity of circular piles in sands is one important design parameter for many pile foundations supporting important structures subjected to tensile forces. Even though a number of formulas based on the limit equilibrium or semi-empirical methods are proposed to predict the uplift capacity of piles in sands, there is a major limitation of the methods in obtaining the accurate predictions. In this paper, the computational limit analysis is employed to investigate the uplift capacity of circular piles in sands. The effects of the important variables including pile length and diameter, soil friction angle and unit weight, and roughness factor at soil-pile interface are examined extensively using the dimensionless parameters while the predicted failure mechanisms associated with the parameters are discussed and compared. Approximate statistical design equations of the uplift capacity of circular piles in sands are developed based on the numerically derived solutions and the existing experimental data. It is found that the proposed design equations provide the most accurate prediction of the uplift capacity of circular piles in sands as compared to the existing formulas.  相似文献   

6.
A research on super-long piles has been primarily based on cast-in-place bored piles. In this article, field tests associated with selected measuring technologies were conducted on two super-long steel pipe piles in offshore areas to investigate the behaviors and performance of super-long steel pipe piles. The strain along the pile shaft was monitored by adopting the Brillouin optical time domain reflection and fiber Bragg grating techniques. Static load tests were also conducted on two test piles to determine the bearing capacities. In addition, the axial forces, relative displacements between piles and soils and pile shaft resistances were calculated based on the measured strain. According to the results of the static load tests, the ultimate bearing capacities of the two test piles are greater than 15,000 and 15,500 kN. Both of these values meet the design requirements. In addition, the two test piles can be treated as pure friction piles, and the load transfer mechanism and relationships between the pile shafts and relative displacements are also discussed. Finally, recommendations for practical engineering and significant conclusions are presented.  相似文献   

7.
The total inline wave forces, the irregular wave forces in particular, on an isolated pile are investigated by experiment. The relationships between force coefficients Cd and CM including in Morison's Eq. . and KC number or Reynolds number Re, and the variation of Cd and Cm in frequency domain are analysed with the method of least-squares in time domain and that of cross-spectral analysis. The plots of C4and Cmversus KCare given for both regular and irregular waves and those for irregular waves are used for numerical simulation of the irregular wave forces on the vertical pile and the results are in fairly good agreement with the test data. Based on the experimental results , the applicability of the spectral analysis method for calculating irregular wave forces on an isolated pile is investigated with the coherency γ between wave and wave forces and with KC number.  相似文献   

8.
Although numerous investigations have been performed over the years to predict the behavior and resistance of piles, the mechanisms are not yet entirely understood. Predicting pile resistance is a difficult task because there are a large number of parameters affecting the capacity that have complex relationships with each other. It is extremely difficult to develop appropriate relationships between various essential parameters, including the soil condition, pile type, driving condition, time effect, and others. This paper describes the application of an artificial neural network (ANN) to predict the resistance of driven piles in dynamic load tests. The training and testing of the ANN were based on 165 data points for driven piles at various construction sites in Korea. Predictions on the tip, shaft, and total pile resistance were made for piles with available corresponding measurements of such values. The effect of the essential parameters on the pile resistance values was investigated through parametric analysis using ANN modeling. The results of this study indicate that the ANN model serves as a reliable and simple predictive tool to appropriately consider various essential parameters for predicting the resistance of driven piles.  相似文献   

9.
Abstract

In this article, the drivability of stepped and tapered offshore piles with the same length and volume has been investigated under hammer blows. To justify the obtained results from field testing and numerical methods, this pile driving procedure has been analyzed and discussed with wave propagation mechanism. It will be shown that tapered pile can be confidently idealized as a number of prismatic segments connected rigidly to each other. This is an interesting finding that fully tapered or stepped piles have a better performance in pile driving and enable users to apply simple one dimensional numerical analysis for simulating pile drivability.  相似文献   

10.
针对海相软土地区螺旋钢管桩承载力低与腐蚀问题,提出一种新型压力注浆螺旋钢管桩,并设计5根足尺试验桩,进行现场抗拔承载性能试验,研究螺旋叶片直径与排布方式对成桩直径与桩基抗拔承载性能的影响.结果表明,成桩直径与螺旋叶片直径呈正相关,在每节延长段钢管末端设置螺旋叶片利于提高水泥土柱完整性,使成桩直径更为饱满,提高桩基的抗拔承载性能.将试验结果和现行规范抗拔极限承载力计算结果进行对比,计算结果约为实测平均值的94%,在此基础上提出压力注浆螺旋钢管桩抗拔承载力计算参数修正建议,为后续的设计提供参考.  相似文献   

11.
为了研究海底滑坡对海洋单桩的冲击力大小,首先通过调整高岭土、粉砂的不同含量,得到不同流变特性、不同密度的碎屑流,采用Herschel-Bulkley模型和幂率模型对流体流变性质进行描述;随后利用自制海底滑坡模型槽,模拟碎屑流在不同流速和黏度下对模型桩的冲击;并结合流体力学理论,建立阻力系数与非牛顿流体雷诺数之间关系表达式。试验数据表明:碎屑流黏度和流速是影响海底滑坡冲击力的主要因素,海底滑坡冲击力随着泥浆黏度和流速的增加而增大。同时,考虑碎屑流剪切稀释特性,得到管桩阻力系数随雷诺数变化的拟合公式,为海洋桩基础设计提供参考。  相似文献   

12.
The behavior of a self-supported earth-retaining wall with stabilizing piles was investigated using a numerical study and field tests in urban excavations. Special attention is given to the reduction of lateral earth pressures acting on a retaining wall with stabilizing piles. Field tests at two sites were performed to verify the performance of the instrumented retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth-retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment are significantly decreased when the retaining wall with stabilizing piles is used. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth-retaining wall with stabilizing piles.  相似文献   

13.
随着超大型海洋结构物的设计和研究日益受到重视,研究多物体之间的流体动力干扰特性显得十分必要。用波动源在截面周线上分布的方法,就垂直桩柱间三维流体动力干扰对波浪力的影响进行了系统的研究,不仅可得到单行柱列的流体动力干扰力学机理的新特性,而且对多行桩柱阵列的研究也取得了若干新的发现:多行柱柱阵列的遮蔽作用强于单行的;无论是单行还是多行柱列,其流体动力干扰特性存在一个十分敏感的来波频域,在此区域内,力的幅值会大大超过其他频域的受力,而且桩柱阵列与交错阵列的力学特性也有所不同。这对超大型海洋结构物的设计有着重要的指导意义。  相似文献   

14.
Pile groups are frequently used to support bridge decks. Scour in the vicinity of piles is the main cause for the bridges failure. In this research, to address the effects of uniform and nonuniform pile spacing on the equilibrium scour depth, laboratory experiments were carried out under steady clear-water conditions. For this purpose, scour depth produced by pile group with various pile spacing and arrangement was investigated using a laboratory flume. Flume bed was covered by uniform sediments with a median size of 0.9?mm and 0.2?m thickness. Flow discharge and velocity as well as scour depth were recorded in each experiment and the data were analyzed. The results showed that the pile spacing influences the local scour depth and with increase in uniform and transverse (perpendicular to the flow) spacing, the maximum scour depth was reduced. The pile spacing variation in line with the flow has a minor effect on scour depth. In addition, the pile spacing perpendicular to the flow was with the most influences on scour depth. The results of this research can be used by engineers to optimize the design of bridges.  相似文献   

15.
The dynamic response of beam–pile–soil system under vertical transient excitation is investigated. Both piles and beam are assumed to be one-dimensional rods and subjected to vertical exciting forces. The uniformly distributed Voigt models are introduced to simulate the pile tip resistances, and the dynamic interactions between piles and beam are simplified as a set of concentrated point loads. Then, the plane strain model, the theory of longitudinal vibration of one-dimensional rod, and the Timoshenko beam theory are used to establish the mathematical models for the motion of soil, piles, and beam, respectively. On this basis, the matrix equation for solving the governing equations is constructed in the Laplace domain and the time-domain response is then obtained by the discrete inverse Fourier transform. Comparisons with numerical simulations and model tests are conducted to evaluate the rationality of the present solution. The results show that the dynamic responses calculated by the proposed solution are generally consistent with simulated curves and experimental data.  相似文献   

16.
考虑了波浪在水流中的变形,计算了波流共存场中海上风力发电机三柱基础的受力.应用离散涡法,求解了不可压缩粘性流体的水平二维涡量-流函数Navier-Stokes方程,模拟了不同桩位布置对波流场的影响.以及各桩受力和三桩基础总力的随布置方式不同的变化.  相似文献   

17.
Abstract

Helical piles are used mainly to resist tension forces generated by uplift and overturning moments of various structures, therefore they have been suggested as a potential alternative to driven piles as offshore pile because they provide a large uplift capacity due to the anchor effect of the helix. To date no standards are available for the assessment of the use of helical piles in the offshore environment. State-of-the art installation and uplift capacity assessment is based on field onshore tests on small helical piles. The purpose of this review is to critically evaluate the current knowledge on helical piles considering uplift capacity, cyclic load, installation torque models and the parameters affecting the installation torque, to understand whether they can be considered for potential offshore applications. The paper could be of valuable interest for engineers and contractors involved in the offshore installation of piles.  相似文献   

18.
国内外尚无人对冰力掩蔽效应进行专门研究。通过低温冰工程实验室内的冰力模型试验,研究了多桩柱结构在不同位置时桩柱间对冰力的掩蔽效应,探索了冰力掩蔽效应的机理和规律,得到了不同冰厚、不同桩柱直径、不同冰攻角、桩柱间不同位置时的冰力掩蔽系数。研究结果可供工程应用。  相似文献   

19.
An attempt is made to present an automated analysis of laterally loaded piles using subgrade reaction theory and the P-δ curves governing the soil properties. The finite difference method is applied in establishing the governing equations. The pile response is obtained using the boundary conditions improved by Newtonian method. Results obtained are forces, moments, deflections and soil reactions for various depths of strata in which such piles exist. Based on these results future recommendations are made.  相似文献   

20.
The behavior of single piles subjected to negative skin friction in soft soil was conducted by analyzing the results from full-scale long-term field measurements and three-dimensional (3D) numerical analyses. A skin friction coefficient (α and β coefficients) of the instrumented piles is back-calculated at different degrees of consolidation (U) of soft marine clay. Back-calculated β-values ranged from 0.15 to 0.35 for clay, and from 0.30 to 0.55 for sand, respectively. In addition, back-calculated α-values ranged from 0.1 to 0.3 for coated pile, and from 0.2 to 0.8 for uncoated pile when undrained shear strength of the soft clay was about 30–60 kPa, respectively. Moreover, this study describes behavior of a pile based on full-coupled 3D finite element (FE) analysis. The appropriate parametric studies needed for verifying the pile-soil interaction with consolidation are presented in this paper. Compared to the results from the measurements, it is shown that the computed results are capable of predicting the pile-soil behavior under consolidation. The major parameters that influence the pile behavior are discussed for different soil-pile conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号