首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
以床面瞬时剪应力作为泥沙起动及输运的水动力机制,建立了结构物周围复杂流场下床面局部冲刷的数学模型。并应用大涡模拟方法对后台阶下游三维湍流流动进行数值模拟,得到台阶下游床面瞬时剪应力的分布规律。为了确定床面瞬时剪应力与泥沙上扬通量的关系,先应用数学模型对不同模型参数下,冲刷开始后5分钟时台阶下游床面形状进行试算。通过试算与实验结果的比较,确定床面瞬时剪应力与泥沙上扬通量关系中需要的模型参数。进一步对冲刷开始后30分钟内台阶下游床面演化规律进行模拟,模拟结果与实验结果相符合。  相似文献   

2.
3.
A numerical model is developed to predict the onset of local scour below offshore pipelines in steady currents and waves. The scour is assumed to start when the pressure gradient underneath the pipeline exceeds the floatation gradient of the sediments. In this model, the water flow field above the bed is determined by solving the two-dimensional (2-D) Reynolds-averaged Navier–Stokes equations with a k-ω turbulence closure. The seepage flow below the seabed is calculated by solving the Darcy's law (Laplace's equation) with known pressure distribution along the common boundaries of the flow domains-seabed. The numerical method used for both the turbulent flow around the pipeline and Darcy's flow in the seabed is a fractional finite element method. The average pressure gradient along the buried pipe surface is employed in the evaluation of onset condition with a calibration coefficient. The numerical model is validated against experimental data available in literature. A unified onset condition for steady currents and waves is proposed. Influences of flow parameters, including water depth, embedment depth, boundary layer thickness, Reynolds number (Re) and Keuleagan–Carpenter (KC) number, on the pressure drop coefficient over the pipeline are studied systematically.  相似文献   

4.
应用切割单元法对海底管道局部冲刷数值模拟   总被引:1,自引:0,他引:1  
陈兵  张桦 《海洋工程》2012,30(1):66-74
采用SIMPLEC算法的有限体积法,求解非定常流动的N-S方程,采用k-ω紊流模型,通过模拟均匀无粘性推移质的冲刷和淤积,得到海底管道由搁置在海床上的状态变为悬跨状态这一过程的管道周围局部海床冲刷情况,建立了海底管道局部冲刷的二维数值模型。海底管道从搁置在底床上到冲刷悬空的过程中,管道周围的空间产生了拓扑变化,这给采用贴体网格并在计算过程中进行网格重构的传统方法带来了很大困难,而采用切割单元法,把物体轮廓从静止的背景直角坐标结构化网格中切割出去,计算过程中不需要传统意义的网格重构过程。数值模型预测的海底管道周围局部冲刷结果与Mao的物理模型实验实测结果及Liang和Cheng等的数值模拟结果符合较好,验证了模型的准确性。  相似文献   

5.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

6.
通过物理模型试验研究水流作用下轴线倾斜海底管道的三维局部冲刷问题。利用超声波探头监测管道下部冲刷沿管轴线方向的扩展过程,分析海底管道三维局部冲刷的动态发展机理。由模型沙的冲蚀试验,建立沙床面剪切应力与泥沙表观侵蚀速率之间的关系式,并引入经验公式对沙床面剪切应力放大系数、泥沙表观侵蚀速率以及远场床面剪切应力之间的关系进行表达。由倾斜管道模型试验,在分析冲刷扩展位置随时间变化数据的基础上,结合上述经验公式以及沙床面剪切应力放大系数与管道埋深的关系,建立轴线倾斜海底管道冲刷扩展速率的预测公式。  相似文献   

7.
海流作用下海底管道局部冲刷数值分析   总被引:1,自引:0,他引:1  
在任意拉格朗日-欧拉参考坐标系下,采用基于雷诺平均的Navier-Stokes方程组(RANS)、流线迎风有限元方法、泥沙输运模型以及底床变形方程,对海流引起的海底管道局部冲刷进行了数值模拟。着重讨论了均匀来流流速和海底管道直径对局部冲刷发展过程及平衡冲刷深度的影响作用。数值结果表明,在冲刷的初始阶段,冲刷深度随时间迅速增加,之后缓慢逼近极限平衡深度;在管径一定的情况下,管道附近的局部平衡冲刷深度与流速大致呈线性关系;当流速超过某一临界区域后,最大平衡冲刷深度出现的位置并不在管道正下方,而是随流速的增加向管道下游方向移动;另外,管道直径也会对平衡冲刷深度产生比较明显的影响,在相同流速下,平衡冲刷深度大致随管径呈线性增大。在本文的计算范围内,海底管道的相对局部平衡冲刷深度基本随雷诺数线性增加,但流速对冲刷深度的影响作用要比管径的影响作用更为明显。  相似文献   

8.
9.
ZHAO  Ming 《中国海洋工程》2002,16(4):513-523
A numerical model is developed for estimation of local scour around a large circular cylinder under vvave action. The model includes wave diffraction around structures, bed shear stress calculation inside the vvave boundary layer and topo-graphical change model. The vvave model is based on the improved Boussinesq equations for varying depth. The vvave boundary layer is calculaled by solving the integrated momentum equation over the boundary layer. The bed shear stress due to streaming, an important factor affecting the sediment transport around a large-scale cylinder, is calculated. The Lagrangian drift velocity is included in calculation of the suspended sediment transport rates. The model is implemented by a finite element method and the results from the present model, which agree well with experimental data, are com-pared vvith those from other methods.  相似文献   

10.
A numerical model for local scour below pipelines is employed to investigate the Reynolds-number dependence of the two-dimensional scour beneath offshore pipelines in steady currents. A novel wall function is proposed in calculating the suspended sediment transport rate in the model. Scour developments beneath a model pipeline and the corresponding prototype pipeline are simulated under the same undisturbed Shields parameter but different values of Reynolds number. The effects of the Reynolds number difference on the scour profile development are investigated. It is found that scour depths for prototype pipelines are about 10–15% smaller than those for model pipelines. The flow phenomena that causes this difference are discussed by means of flow visualization. The normalized time scales are found to be approximately the same. The simulated scour profiles for the model pipelines agree well with the experimental results from an independent study.  相似文献   

11.
The scour behavior of cushioned caisson constructed on reinforced ground, which is used to support superstructure constructed in deep water in seismic zones, was investigated by experimental and numerical methods. Flume tests under nine different flow velocities between 18 and 48?cm/s were performed based on hydraulic similarity design. Complementary numerical simulations were also conducted for the flow velocities ranging from 16 to 46?cm/s. Five typical working modes of the foundation under erosion, namely, ideal working, well working, edge failure, shear failure, and total failure, are analyzed together with their potential impacts on seismic-designed foundation. The critical shear stress, local flow structures, and streamlines were used as the key factors to analyze the change of bed materials and the scour characteristics. Fluid–solid interaction model was built by computational fluid dynamics with sediment transport model, and k–ε turbulent model has been implemented to describe the turbulence in the fluid phase typical of scour process. The mechanisms of two possible failure models for the foundation layer elements were identified, based on which recommendations were provided for scour protection to ensure the integrity and performance of seismic-designed foundations. The integrated computational model and model experiments also demonstrate a framework to understand the local scour mechanism for the cushioned caisson on reinforced ground.  相似文献   

12.
针对我国南海某岛礁珊瑚砂地基上的圆形桩基础,采用N-S方程K-s模型、双向耦合方式跟踪流场中颗粒运动轨 迹的方法,对桩周珊瑚砂的冲刷规律进行了求解,分析了桩体周围流体的速度场以及桩体表面剪应力场的分布规律,同时对桩周珊瑚砂冲刷坑的形成过程进行了模拟。计算结果表明,在桩体周围形成的马蹄形漩涡和桩柱后方的尾涡作用下,桩周土体出现了较为明显的冲刷现象,涡旋的释放显著地影响着珊瑚砂地基上桩基的冲刷坑形状;而且,由于珊瑚砂颗粒密度较石英砂小,水动力作用下桩周冲刷坑更容易形成,所以实际工程中需要考虑有效的防护措施。  相似文献   

13.
The scour around submarine pipelines may influence their stability; therefore scour prediction is a very important issue in submarine pipeline design. Several investigations have been conducted to develop a relationship between wave-induced scour depth under pipelines and the governing parameters. However, existing formulas do not always yield accurate results due to the complexity of the scour phenomenon. Recently, machine learning approaches such as Artificial Neural Networks (ANNs) have been used to increase the accuracy of the scour depth prediction. Nevertheless, they are not as transparent and easy to use as conventional formulas. In this study, the wave-induced scour was studied in both clear water and live bed conditions using the M5’ model tree as a novel soft computing method. The M5’ model is more transparent and can provide understandable formulas. To develop the models, several dimensionless parameter, such as gap to diameter ratio, Keulegan-Carpenter number and Shields number were used. The results show that the M5’ models increase the accuracy of the scour prediction and that the Shields number is very important in the clear water condition. Overall, the results illustrate that the developed formulas could serve as a valuable tool for the prediction of wave-induced scour depth under both live bed and clear water conditions.  相似文献   

14.
The submerged 3D turbulent jet flow behavior around a pile on a rigid bed and on a scoured bed was studied experimentally and numerically. ADV was used to obtain the jet velocity distributions and Realizable k–ε turbulence model was used for the prediction of flow field around a pile. The jet flow area was three-dimensional and thus numerical model was a three-dimensional model. The numerical results were used to predict the velocity close to the pile and bed shear stress on the bed. In general, the results indicated that the flow field was also in agreement with the findings of previous experiments in literature and the related principles in the subject area. The experimental results demonstrated that Acoustic Doppler Velocimeter (ADV) measurements were almost identical with the Realizable kε turbulence model results for turbulence intensity I=10%.  相似文献   

15.
Transport of bed sediment inside and beneath the scour protection may cause deformation and sinking of the scour protection for pile foundations. This may reduce the stability of the mono pile and change the natural frequency of the dynamic response of an offshore wind turbine installed on it in an unfavourable manner. Using physical models and 3D computational fluid dynamic (CFD) numerical simulations, the velocity and bed shear stresses are investigated in complex scour protections around mono piles in steady current. In the physical model the scour protections consisted of an upper cover layer with uniformly distributed coarse stones and a lower filter layer with finer stones. For the numerical simulations, the Flow-3D software was used. The scour protection layers were simulated with different numerical approaches, namely regularly arranged spheres, porous media, or their combinations (hybrid models). Numerical simulations with one or four layers of cover stones without filter layer were first computed. Three additional simulations were then made for a scour protection with a cover layer and a single filter layer. Finally, a simulation of a full scale foundation and scour protection was made with porous media approach.Based on the physical and numerical results, a method to determine the critical stones size to prevent motion of the base sediment is established and compared to a full scale case with sinking of scour protection (Horns Rev I Offshore Wind Farm, Denmark). It is also found that the CFD simulations are capable of calculating the flow velocities when the scour protection is represented by regular arranged spheres, while the turbulence in general is underestimated. The velocity can also be calculated using porous media flow approach, but the accuracy is not as good as for spheres. The deviation is more severe for more complex scour protections. In general, computational models provide valuable information for the prediction and design of scour protections for offshore wind farms.  相似文献   

16.
基于FLOW-3D的三维数值波流水槽的构建及应用研究   总被引:1,自引:0,他引:1  
侯勇俊  熊烈  何环庆  杨晖 《海洋科学》2015,39(9):111-116
为获得具有自由液面的三维波流水槽,基于FLOW-3D有限差分程序,选用RNG?-?紊流模型,基于线性波速度入口法造波,采用VOF方法对自由液面进行追踪。构建具有自由液面的三维波流联合作用数值水槽,对比压力出流边界与Sammerfeld辐射边界发现,在波流水槽内采用压力出流边界能够保持流体体积守恒,波形稳定;加入的孔隙结构,不仅能保证良好的消波效果,而且流体能够顺利通过,对消除反射波影响效果良好;与实验结果对比发现,垂向时均流速与实验数据拟合较好。波流场中桩柱前形成明显下潜水流及漩涡,是形成局部冲刷主要原因。本文所构建的波流数值模型波形稳定、具有良好的波流特性,能较好反应波浪与水流之间的相互作用,可进一步模拟波流场与结构物之间的相互作用或波流作用下泥沙冲刷等研究。  相似文献   

17.
This paper presents the results of an experimental investigation on the near-bed flow patterns, the bed shear stress amplification and scour around the head of a vertical-wall breakwater, using regular waves. The Keulegan-Carpenter number (KC), based on the diameter of the breakwater head, is found to be the major parameter that governs the flow and the equilibrium scour depth. Basic flow structures are identified as function of KC. The scour depth is found to increase with increasing the Keulegan-Carpenter number. The necessary extent of the conventional stone protection is studied. An empirical formula is worked out for the width of the protection layer as function of KC. Also, the effects of head shape, the angle of attack and the presence of a co-directional current are investigated. The results indicate that the scour depth is increased considerably in the presence of a current. Likewise, the scour depth is increased when the head shape is changed from a round shape to a sharp-edged one. It is found that the angle of attack is also an influencing factor as regards the scour depth.  相似文献   

18.
近壁圆柱绕流问题在海底悬跨管道的研究中具有重要的意义。在绕流阻力、升力以及海底土壤的耦合作用下,海底管道所发生的移位、悬跨等现象对于海底管道的安全运行构成了很大的威胁。正确预测各种绕流条件下管流之间的作用力是保证油气管道安全的首要任务。海底管道在极端海洋环境条件下的管、流相互作用为高雷诺数绕流问题,处于高雷诺数下的绕流模拟比处于低雷诺数下的绕流模拟要复杂很多,它需要更精细的网格以及合适的湍流模型。此文对处于悬跨状态下的海底管道进行数值研究,给出不同间隙比下海流绕流海底管道的流场结构形态,分析了间隙比对绕流阻力和绕流升力的影响,为进一步研究海底悬跨管道的受力和变形提供载荷边界数据。  相似文献   

19.
张卓  宋志尧 《海洋与湖沼》2015,46(5):995-1000
潮流的流速分布和湍流切应力的分布密切相关。为了研究潮流湍流切应力的特征和变化规律,本文从潮流运动方程推导出随潮流呈周期性变化的湍流切应力随深度的分布表达式。从江苏近海现场实测流速剖面中计算得到一个潮周期内的湍流切应力的变化过程。通过将实测值与本文理论解的比较发现,计算值能很好地反映出实测值的变化特征,尤其是能正确地反映潮流在加速和减速过程中,湍流切应力偏离线性分布呈现上凹和下凹的现象,以及只有在加减速转换的时候切应力才呈现线性分布的特点。最后,通过分析湍流切应力振幅及相位沿水深的变化情况,认为反映潮流周期、涡粘性和水深之间关系的参数Ri是决定湍流切应力弯曲程度及分布形态的重要参数。对于近海潮流,水深是影响湍流切应力偏离线性程度的主要因素。  相似文献   

20.
基于开源的计算流体力学模式REEF3D,建立了海底管道局部冲刷水槽数值模型,在验证单向流实验结果的基础上,进一步对往复流作用下的海底管道局部冲刷机制进行了研究,并作对比分析。研究表明,总体上,往复流对管道所在海床局部冲刷规模比单向流弱。当流向改变后,原先下游的堆积区转变成上游,优先受到冲刷,并填充到管道下方的冲刷坑,同时使水流在管道下方的作用减弱。这种回填过程,使短周期下的往复流作用需要更长的冲淤平衡时间。在这种回填与冲刷的共同作用下,上下游的冲刷坑坡度会因流向变化而变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号