首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study analyzes liquefaction in the Kumluca/Antalya residential area and surroundings, using seismic velocities of soil deposits and the predominant period of the earthquake wave. The liquefaction analysis calculates shear–stress ratio, shear–resistance ratio and safety factor. Shear wave velocity used in liquefaction analysis was determined through surface waves. Moreover, the dynamic parameters of the ground were calculated through seismic velocities. Distributions of groundwater, shear wave velocity, adjusted shear wave velocity, predominant period of vibration, soil amplification and ground acceleration of the research area were mapped. In addition, the liquefied and non-liquefied areas as a result of liquefaction analysis in Kumluca were determined and presented as maps. Examining these maps, among all these maps, the limits of the lagoon sandbar and the old lake area were determined using only the liquefaction map.  相似文献   

2.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

3.
IntroductionThecrustaltectonicmovementisacomplicatedevolutionprocesswithtimeandspace.Spatially,themovementofcrustaltectoniciscloselyrelatedtotheinter-movementandinteractionofmulti-leveledcrustalblocksinacertainregionandtheirborderfaults.Temporally,themovementiscloselyrelatedtothatofmulti-leveledcrustalblocksandtimesequencedevelopmentofinteraction.Anearthquakeoccurrenceistheresultofsuddenruptureofcrustmediaundertheactionoftectonicstressfield,isalsoacomplicatedprocessinnercrust.Duetotheobviousi…  相似文献   

4.
Shear wave velocity–depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites.  相似文献   

5.
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (σ′v0), soil type, shear wave velocity (Vs) and earthquake parameters such as peak horizontal acceleration (amax) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are σ′v0, soil type, Vs, amax and M. In the other model based on shear wave velocity alone uses Vs, amax and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model.  相似文献   

6.
For assessing earthquake hazard of metro cities, knowledge of soil amplification, thickness and properties of sedimentary layer are essential. In order to map the soil thickness using microtremor survey method, in Bangalore city, it is required to calibrate the relation between fundamental resonance frequency of the soil layer and its thickness for the region. For this purpose microtremor survey was carried out at 34 locations in the city where borehole log was available. The resonance frequency of the soil is evaluated from the microtremor recordings using the H/V ratio technique. A nonlinear regression relation between the thickness of sedimentary layer h (m), from the borehole logs, and the resonance frequency fr (Hz), was derived as h=(58.3±8.8)fr−(0.95)±0.1. Using the model of shear wave velocity increasing with depth at these locations, the derived average shear wave velocity and the corresponding soil thickness were used, to get an empirical relation between VS (m/s) and depth z(m), as Vs=(174±28)(1+z)0.16±0.07. This relation also compares reasonably with the fit obtained between simulated VS and depth from borehole logs for Bangalore city. The calibrated relations can be used at locations in Bangalore city where borehole logs are not available, for finding the thicknesses and shear wave velocities of the local soil layers at the survey locations.  相似文献   

7.
How rock is weathered physically and chemically into transportable material is a fundamental question in critical‐zone science. In addition, the distribution of weathered material (soil and intact regolith) across upland landscapes exerts a first‐order control on the hydrology of watersheds. In this paper we present the results of six shallow seismic‐refraction surveys in the Redondo Mountain region of the Valles Caldera, New Mexico. The P‐wave velocities corresponding to soil (≤ 0.6 km s?1) were inferred from a seventh seismic survey where soil‐thickness data were determined by pit excavation. Using multivariable regression, we quantified the relationships among slope gradient, aspect, and topographic wetness index (TWI) on soil and regolith (soil plus intact regolith) thicknesses. Our results show that both soil and regolith thicknesses vary inversely with TWI in all six survey areas while varying directly with slope aspect (i.e. thicker beneath north‐facing slopes) and inversely with slope gradient (i.e. thinner beneath steep slopes) in the majority of the survey areas. An empirical model based on power‐law relationships between regolith thickness and its correlative variables can fit our inferred thicknesses with R2 ‐values up to 0.880 for soil and 0.831 for regolith in areas with significant topographic variations. These results further demonstrate the efficacy of shallow seismic refraction for mapping and determining how soil and regolith variations correlate with topography across upland landscapes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.  相似文献   

9.
Estimating the possible region of liquefaction occurrence during a strong earthquake is highly valuable for economy loss estimation, reconnaissance efforts and site investigations after the event. This study identified and compiled a large amount of liquefaction case histories from the 2008 Wenchuan earthquake, China, to investigate the relationship between the attenuation of seismic wave energy and liquefaction distance limit during this earthquake. Firstly, we introduced the concept of energy absorption ratio, which is defined as the absorbed energy of soil divided by the imparted energy of seismic waves at a given site, and the relationship between the energy absorption ratio and the material damping ratio was established based on shear stress–strain loop of soil element and the seismic wave propagation process from the source to the site. Secondly, the threshold imparted seismic energy of liquefaction was obtained based on existing researches of absorbed energy required to trigger liquefaction of sandy soils and the ground motion attenuation characteristics of the 2008 Wenchuan earthquake, and the liquefaction distance limit of this earthquake was estimated according to the proposed magnitude–energy–distance relationship. Finally, the field liquefaction database of 209 sites of the 2008 Wenchuan earthquake was used to validate such an estimation, and the field observed threshold imparted seismic energy to cause liquefaction in recent major earthquakes worldwide was back-analyzed to check the predictability of the present method, and several possible mechanisms were discussed to explain the discrepancy between the field observations and the theoretical predictions. This study indicates that seismic energy attenuation and liquefaction distance limit are regional specific and earthquake dependent, and 382 J/m3 is the average level of threshold imparted seismic energy to cause liquefaction for loose saturated sandy soils, and the corresponding liquefaction distance limit is approximately 87.4 km in fault distance for a Mw?=?7.9 event in the Chengdu Plain. The proposed regional energy attenuation model and threshold imparted seismic energy may be considered as an approximate tool in evaluating the liquefaction hazard during potential earthquakes in this area.  相似文献   

10.
This study devises a new analytical relationship to determine the porosity of water-saturated soils at shallow depth using seismic compressional and shear wave velocities. Seismic refraction surveys together with soil sample collection were performed in selected areas containing water-saturated clay–silt, sand and gravely soils. Classification of clay–silt, sand and gravel dense soils provided the coefficient of experimental equation between the data sets, namely, Poisson's ratio, shear modulus and porosity values. This study presents a new analytical relationship between Poisson's ratio and shear modulus values, which are obtained from seismic velocities and porosity values of water-saturated material computed from water content and grain densities, which are determined by laboratory analysis of disturbed samples. The analytical relationship between data sets indicates that when the shear modulus of water-saturated loose soil increases, porosity decreases logarithmically. If shear modulus increases in dense or solid saturated soils, porosity decreases linearly.  相似文献   

11.
为了解决河南豫北地区地震的定位问题 ,对豫北台网内的 10个典型地震 ,使用了 7个地震台站的资料 ,用波速比求出横波速度 ;用和达定位法 (有的同时使用高桥法 )进行了精确定位 ,求出震源深度 ;测量了震中至各台的震中距 ,以此反算出了纵波速度。通过计算 ,确定出了较为适合河南豫北地震台网地区的波速。  相似文献   

12.
基岩弹性刚度对土层地震反应的影响   总被引:4,自引:1,他引:3  
将基岩上均匀、各向同性土层的地震反应,简化为置于弹性支座上的一维剪切梁模型进行分析。将地震激励假定为白噪声谱,在随机边界激励下,主要探讨了土层与基岩2种介质间的波阻抗比、波速比、土层厚度和阻尼特性对土层地震反应的影响。计算结果表明,对于一定的土层厚度,在一定阻尼比条件下,土层和基岩的阻抗比小到一定程度时,可以将基岩假定为刚性约束,而误差可以控制在一定的范围内。  相似文献   

13.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

14.
选取某核电场地控制性钻孔的厚度、剪切波速、密度等实际勘探数据,通过改变回填土剪切波速,分析了回填土不确定性对场地地震动参数的影响。研究结果表明:在回填土层厚度不变和模型总厚度不变的情况下,地表的水平向峰值加速度随着回填土剪切波速的增大而减小,但水平向峰值加速度增幅逐渐减小;回填土剪切波速到达一定的波速就不再影响地表水平峰值加速度;随着回填土剪切波速的增加,整个反应谱的谱值都普遍减小。  相似文献   

15.
The great Wenchuan earthquake (Ms = 8.0) in 2008 caused severe damage in the western part of the Chengdu Plain. Soil liquefaction was one of the major causes of damage in the plain areas, and proper evaluation of liquefaction potential is important in the definition of the seismic hazard facing a given region and post-earthquake reconstruction. In this paper, a simplified procedure is proposed for liquefaction assessment of sandy deposits using shear wave velocity (Vs), and soil liquefaction from the Banqiao School site was preliminarily investigated after the earthquake. Boreholes were made at the site and shear wave velocities were measured both by SASW and down-hole methods. Based on the in-situ soil information and Vs profiles, the liquefaction potential of this site was evaluated. The results are reasonably consistent with the actual field behavior observed after the earthquake, indicating that the proposed procedure is effective. The possible effects of gravel and fines contents on liquefaction of sandy soils were also briefly discussed.  相似文献   

16.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

17.
Earthquake-induced hazards are profoundly affected by site effects related to the amplification of ground motions, which are strongly influenced by local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated geographic information system (GIS)-based system for geotechnical data, called the geotechnical information system (GTIS), was developed to establish a regional counterplan against earthquake ground motions in the Seoul metropolitan area. In particular, to reliably predict spatial geotechnical information, a procedural methodology for building the GTIS within a GIS framework was developed and applied to the Seoul area in Korea. To build the GTIS, pre-existing geotechnical data were collected in and around the study area, and then a walk-over site survey was conducted to acquire surface geo-knowledge data. In addition, the representative shear wave velocities for geotechnical layers were derived by statistically analyzing many seismic test data in Korea. The GTIS was used in a practical application to estimate site effects in the study area; seismic zoning maps of geotechnical earthquake parameters, such as the depth to bedrock and the site period, were created and presented as a regional synthetic strategy for earthquake risk assessment. Furthermore, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site and administrative sub-unit in the study area. The methodology and results of the case study of seismic zonations in the Seoul area verified that the GIS-based GTIS can be very useful for the regional estimation of seismic risk and also to support decisions regarding seismic hazard mitigation, particularly in the metropolitan area.  相似文献   

18.
Soil shear wave velocity has been recognized as a governing parameter in the assessment of the seismic response of slopes. The spatial variability of soil shear wave velocity can influence the seismic response of sliding mass and seismic displacements. However, most analyses of sliding mass response have been carried out by deterministic models. This paper stochastically investigates the effect of random heterogeneity of shear wave velocity of soil on the dynamic response of sliding mass using the correlation matrix decomposition method and Monte Carlo simulation(MCS). The software FLAC 7.0 along with a Matlab code has been utilized for this purpose. The influence of statistical parameters on the seismic response of sliding mass and seismic displacements in earth slopes with different inclinations and stiffnesses subject to various earthquake shakings was investigated. The results indicated that, in general, the random heterogeneity of soil shear modulus can have a notable impact on the sliding mass response and that neglecting this phenomenon could lead to underestimation of sliding deformations.  相似文献   

19.
沉积盆地与近断层地震共同作用会增加地震破坏的风险水平,尤其是盆地下方直下型断层发震情况。采用动力学震源模型刻画断层破裂发震过程,开展沉积盆地直下型断层谱元法地震动模拟研究,探讨不同断层面初始剪应力和成核区位置下三维沉积盆地地表响应规律。研究结果表明,断层面应力降对盆地地表地震动的影响显著,在断层面强度一定的情况下,随着初始剪应力的增大,即应力降增大,盆地地表峰值响应增大,原因在于应力降的改变影响了断层破裂释放能量,进而引起断层破裂速度改变,最终导致盆地地表响应发生变化;改变断层面成核区位置会对盆地内部地震动分布规律产生影响,当成核区位置从断层中间向断层左侧移动时,盆地左侧地震动逐渐减小,而右侧地震动逐渐增大,最终表现为盆地右侧地震动显著高于盆地左侧,原因在于改变成核区位置后,导致近断层地震动的方向性效应发生变化。  相似文献   

20.
剪切波速对场地地表地震动参数的影响   总被引:3,自引:2,他引:1  
本文以江淮地区典型场地资料为原型,将土层剪切波速实测值按照一定比例进行增减,构造多种场地土层地震反应分析模型,选择Taft、E1centro和Kobe三条强震记录作为地震输入,采用一维频域等效线性化波动方法进行了土层地震反应分析.研究结果表明,剪切波速的变异性与场地地表地震动的影响程度与输入基岩地震动的频谱特性、幅值、土层结构等因素有关.地表峰值加速度随着剪切波速的增大而逐渐增大,地表加速度反应谱的特征周期随着剪切波速的增大而逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号