首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
地球物理中的反问题与不适定问题   总被引:2,自引:0,他引:2       下载免费PDF全文
本文讨论地球物理中的某些反问题与不适定问题。其内容如下:场的延拓与偏微分方程的不适定Cauchy问题;不适定问题稳定性的性态;线性不适定问题的正则化算法。  相似文献   

3.
Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.  相似文献   

4.
A new uncertainty estimation method, which we recently introduced in the literature, allows for the comprehensive search of model posterior space while maintaining a high degree of computational efficiency. The method starts with an optimal solution to an inverse problem, performs a parameter reduction step and then searches the resulting feasible model space using prior parameter bounds and sparse‐grid polynomial interpolation methods. After misfit rejection, the resulting model ensemble represents the equivalent model space and can be used to estimate inverse solution uncertainty. While parameter reduction introduces a posterior bias, it also allows for scaling this method to higher dimensional problems. The use of Smolyak sparse‐grid interpolation also dramatically increases sampling efficiency for large stochastic dimensions. Unlike Bayesian inference, which treats the posterior sampling problem as a random process, this geometric sampling method exploits the structure and smoothness in posterior distributions by solving a polynomial interpolation problem and then resampling from the resulting interpolant. The two questions we address in this paper are 1) whether our results are generally compatible with established Bayesian inference methods and 2) how does our method compare in terms of posterior sampling efficiency. We accomplish this by comparing our method for two electromagnetic problems from the literature with two commonly used Bayesian sampling schemes: Gibbs’ and Metropolis‐Hastings. While both the sparse‐grid and Bayesian samplers produce compatible results, in both examples, the sparse‐grid approach has a much higher sampling efficiency, requiring an order of magnitude fewer samples, suggesting that sparse‐grid methods can significantly improve the tractability of inference solutions for problems in high dimensions or with more costly forward physics.  相似文献   

5.
Despite impressive progress in the development and application of electromagnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical conductivity within the Earth, there is one question which remains poorly addressed—uncertainty quantification of the recovered conductivity models. Apparently, only an inversion based on a statistical approach provides a systematic framework to quantify such uncertainties. The Metropolis–Hastings (M–H) algorithm is the most popular technique for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. However, all statistical inverse schemes require an enormous amount of forward simulations and thus appear to be extremely demanding computationally, if not prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D modelling codes which can run large-scale 3-D models of practical interest for fractions of a second on high-performance multi-core platforms. But, even with these codes, the challenge for M–H methods is to construct proposal functions that simultaneously provide a good approximation of the target density function while being inexpensive to be sampled. In this paper we address both of these issues. First we introduce a variant of the M–H method which uses information about the local gradient and Hessian of the penalty function. This, in particular, allows us to exploit adjoint-based machinery that has been instrumental for the fast solution of deterministic inverse problems. We explain why this modification of M–H significantly accelerates sampling of the posterior probability distribution. In addition we show how Hessian handling (inverse, square root) can be made practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we discuss uncertainty analysis based on stochastic inversion results. In addition, we demonstrate how this analysis can be performed within a deterministic approach. In the second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.  相似文献   

6.
Regularization methods are used to recover a unique and stable solution in ill-posed geophysical inverse problems. Due to the connection of homogeneous operators that arise in many geophysical inverse problems to the Fourier basis, for these operators classical regularization methods possess some limitations that one may try to circumvent by wavelet techniques.
In this paper, we introduce a two-step wavelet-based regularization method that combines classical regularization methods with wavelet transform to solve ill-posed linear inverse problems in geophysics. The power of the two-step wavelet-based regularization for linear inversion is twofold. First, regularization parameter choice is straightforward; it is obtained from a priori estimate of data variance. Second, in two-step wavelet-based regularization the basis can simultaneously diagonalize both the operator and the prior information about the model to be recovered. The latter is performed by wavelet-vaguelette decomposition using orthogonal symmetric fractional B-spline wavelets.
In the two-step wavelet-based regularization method, at the first step where fully classical tools are used, data is inverted for the Moore-Penrose solution of the problem, which is subsequently used as a preliminary input model for the second step. Also in this step, a model-independent estimate of data variance is made using nonparametric estimation and L-curve analysis. At the second step, wavelet-based regularization is used to partially recover the smoothness properties of the exact model from the oscillatory preliminary model.
We illustrated the efficiency of the method by applying on a synthetic vertical seismic profiling data. The results indicate that a simple non-linear operation of weighting and thresholding of wavelet coefficients can consistently outperform classical linear inverse methods.  相似文献   

7.
常规AVO三参数反演是通过Zoeppritz方程的近似公式来建立AVO正演模拟的过程,然而在P波入射角过临界角和弹性参数在纵向上变化剧烈的情况下,Zoeppritz方程近似公式精度有限.针对这种情况,可以使用精确的Zoeppritz方程来构建反演目标函数,由于精确Zoeppritz方程中P波反射系数和弹性参数之间是一种复杂的非线性关系,通常解决途径是利用非线性的优化算法来进行数值计算,但是非线性优化算法的缺点是计算量过大;另外一种途径是利用广义线性反演的方法,通过泰勒一阶展开式将P波反射振幅展开后,用线性关系近似表达非线性关系,经过几次迭代后,在理论上可以达到很高的精度,但是广义线性反演算法的核心部分--Jacobian矩阵由于矩阵条件数过大,往往会造成反演算法的不稳定,其应用范围得到了限制.贝叶斯反演方法是通过引入模型参数的先验分布结合噪声的似然函数,生成模型参数的后验分布,通过求取模型参数的最大后验概率分布来得到模型参数的反演解,由于引入模型参数的先验分布信息,可以有效的降低反演的不适定问题.本文将两种反演算法的思想相结合,利用广义线性反演算法的思想,构建AVO正演模拟的过程来提高大角度地震数据反演的精度,同时结合贝叶斯理论,通过引入模型参数的先验分布信息构建反演目标函数的正则化项,可以有效降低由于Jacob矩阵条件数过大带来的反演不适定问题,该算法假设模型参数服从三变量柯西分布.  相似文献   

8.
The response of groundwater basins to natural and anthropogenic inputs depends on many interrelated factors such as the values of groundwater flow and mass transport parameters. This work presents a theoretical analysis of the impact of parameter uncertainty on groundwater management decisions. It is shown that under classical, Bayesian, and deterministic assumptions about the parameter structure, the resulting management decisions could be very different. This underscores the importance of adopting the proper parameter structure and the need for using consistent methods to solve the inverse problem.  相似文献   

9.
Inverse problems involving the characterization of hydraulic properties of groundwater flow systems by conditioning on observations of the state variables are mathematically ill-posed because they have multiple solutions and are sensitive to small changes in the data. In the framework of McMC methods for nonlinear optimization and under an iterative spatial resampling transition kernel, we present an algorithm for narrowing the prior and thus producing improved proposal realizations. To achieve this goal, we cosimulate the facies distribution conditionally to facies observations and normal scores transformed hydrologic response measurements, assuming a linear coregionalization model. The approach works by creating an importance sampling effect that steers the process to selected areas of the prior. The effectiveness of our approach is demonstrated by an example application on a synthetic underdetermined inverse problem in aquifer characterization.  相似文献   

10.
This paper develops a new method for decision-making under uncertainty. The method, Bayesian Programming (BP), addresses a class of two-stage decision problems with features that are common in environmental and water resources. BP is applicable to two-stage combinatorial problems characterized by uncertainty in unobservable parameters, only some of which is resolved upon observation of the outcome of the first-stage decision. The framework also naturally accommodates stochastic behavior, which has the effect of impeding uncertainty resolution. With the incorporation of systematic methods for decision search and Monte Carlo methods for Bayesian analysis, BP addresses limitations of other decision-analytic approaches for this class of problems, including conventional decision tree analysis and stochastic programming. The methodology is demonstrated with an illustrative problem of water quality pollution control. Its effectiveness for this problem is compared to alternative approaches, including a single-stage model in which expected costs are minimized and a deterministic model in which uncertain parameters are replaced by their mean values. A new term, the expected value of including uncertainty resolution, or EVIUR, is introduced and evaluated for the illustrative problem. It is a measure of the worth of incorporating the experimental value of decisions into an optimal decision-making framework. For the illustrative problem, the two-stage adaptive management framework extracted up to approximately 50% of the gains of perfect information. The strength and limitations of the method are discussed and conclusions are presented.  相似文献   

11.
A new approximate method of solution for stochastic optimal control problems with many state and control variables is introduced. The method is based on the expansion of the optimal control into the deterministic feedback control plus a caution term. The analytic, small-perturbation calculation of the caution term is at the heart of the new method. The developed approximation depends only on the first two statistical moments of the random inputs and up to the third derivatives of the cost functions. Its computational requirements do not exhibit the exponential growth exhibited by discrete stochastic DP and can be used as a suboptimal solution to problems for which application of stochastic DP is not feasible. The method is accurate when the cost-to-go functions are approximately cubic in a neighbourhood around the deterministic trajectory whose size depends on forecasting uncertainty. Furthermore, the method elucidates the stochastic optimization problem yielding insights which cannot be easily obtained from the numerical application of discrete DP.  相似文献   

12.
A concept of environmental forecasting based on a variational approach is discussed. The basic idea is to augment the existing technology of modeling by a combination of direct and inverse methods. By this means, the scope of environmental studies can be substantially enlarged. In the concept, mathematical models of processes and observation data subject to some uncertainties are considered. The modeling system is derived from a specially formulated weak-constraint variational principle. A set of algorithms for implementing the concept is presented. These are: algorithms for the solution of direct, adjoint, and inverse problems; adjoint sensitivity algorithms; data assimilation procedures; etc. Methods of quantitative estimations of uncertainty are of particular interest since uncertainty functions play a fundamental role for data assimilation, assessment of model quality, and inverse problem solving. A scenario approach is an essential part of the concept. Some methods of orthogonal decomposition of multi-dimensional phase spaces are used to reconstruct the hydrodynamic background fields from available data and to include climatic data into long-term prognostic scenarios. Subspaces with informative bases are constructed to use in deterministic or stochastic-deterministic scenarios for forecasting air quality and risk assessment. The results of implementing example scenarios for the Siberian regions are presented.  相似文献   

13.
14.
Electrical resistivity tomography is a non-linear and ill-posed geophysical inverse problem that is usually solved through gradient-descent methods. This strategy is computationally fast and easy to implement but impedes accurate uncertainty appraisals. We present a probabilistic approach to two-dimensional electrical resistivity tomography in which a Markov chain Monte Carlo algorithm is used to numerically evaluate the posterior probability density function that fully quantifies the uncertainty affecting the recovered solution. The main drawback of Markov chain Monte Carlo approaches is related to the considerable number of sampled models needed to achieve accurate posterior assessments in high-dimensional parameter spaces. Therefore, to reduce the computational burden of the inversion process, we employ the differential evolution Markov chain, a hybrid method between non-linear optimization and Markov chain Monte Carlo sampling, which exploits multiple and interactive chains to speed up the probabilistic sampling. Moreover, the discrete cosine transform reparameterization is employed to reduce the dimensionality of the parameter space removing the high-frequency components of the resistivity model which are not sensitive to data. In this framework, the unknown parameters become the series of coefficients associated with the retained discrete cosine transform basis functions. First, synthetic data inversions are used to validate the proposed method and to demonstrate the benefits provided by the discrete cosine transform compression. To this end, we compare the outcomes of the implemented approach with those provided by a differential evolution Markov chain algorithm running in the full, un-reduced model space. Then, we apply the method to invert field data acquired along a river embankment. The results yielded by the implemented approach are also benchmarked against a standard local inversion algorithm. The proposed Bayesian inversion provides posterior mean models in agreement with the predictions achieved by the gradient-based inversion, but it also provides model uncertainties, which can be used for penetration depth and resolution limit identification.  相似文献   

15.
二维波动方程速度的正则化-同伦-测井约束反演   总被引:17,自引:4,他引:13       下载免费PDF全文
傅红笋  韩波 《地球物理学报》2005,48(6):1441-1448
针对二维波动方程反问题,将大范围收敛的同伦方法引入速度参数的反演过程中,并将其与求解不适定问题的Tikhonov正则化有机结合,提出了一种新的、特别适用于非线性的、不适定的、多极值的地震勘探反演问题的反演策略:正则化-同伦方法. 为了充分利用测井资料和地震资料的互补特征,进一步提高反演分辨率并压制噪声,设计了正则化-同伦-测井约束联合反演方法. 大量数值试验结果表明了这两种方法的有效性.  相似文献   

16.
The whole subject of three-dimensional (3-D) electromagnetic (EM) modelling and inversion has experienced a tremendous progress in the last decade. Accordingly there is an increased need for reviewing the recent, and not so recent, achievements in the field. In the first part of this review paper I consider the finite-difference, finite-element and integral equation approaches that are presently applied for the rigorous numerical solution of fully 3-D EM forward problems. I mention the merits and drawbacks of these approaches, and focus on the most essential aspects of numerical implementations, such as preconditioning and solving the resulting systems of linear equations. I refer to some of the most advanced, state-of-the-art, solvers that are today available for such important geophysical applications as induction logging, airborne and controlled-source EM, magnetotellurics, and global induction studies. Then, in the second part of the paper, I review some of the methods that are commonly used to solve 3-D EM inverse problems and analyse current implementations of the methods available. In particular, I also address the important aspects of nonlinear Newton-type optimisation techniques and computation of gradients and sensitivities associated with these problems.  相似文献   

17.
Despite their apparent high dimensionality, spatially distributed hydraulic properties of geologic formations can often be compactly (sparsely) described in a properly designed basis. Hence, the estimation of high-dimensional subsurface flow properties from dynamic performance and monitoring data can be formulated and solved as a sparse reconstruction inverse problem. Recent advances in statistical signal processing, formalized under the compressed sensing paradigm, provide important guidelines on formulating and solving sparse inverse problems, primarily for linear models and using a deterministic framework. Given the uncertainty in describing subsurface physical properties, even after integration of the dynamic data, it is important to develop a practical sparse Bayesian inversion approach to enable uncertainty quantification. In this paper, we use sparse geologic dictionaries to compactly represent uncertain subsurface flow properties and develop a practical sparse Bayesian method for effective data integration and uncertainty quantification. The multi-Gaussian assumption that is widely used in classical probabilistic inverse theory is not appropriate for representing sparse prior models. Following the results presented by the compressed sensing paradigm, the Laplace (or double exponential) probability distribution is found to be more suitable for representing sparse parameters. However, combining Laplace priors with the frequently used Gaussian likelihood functions leads to neither a Laplace nor a Gaussian posterior distribution, which complicates the analytical characterization of the posterior. Here, we first express the form of the Maximum A-Posteriori (MAP) estimate for Laplace priors and then use the Monte-Carlo-based Randomize Maximum Likelihood (RML) method to generate approximate samples from the posterior distribution. The proposed Sparse RML (SpRML) approximate sampling approach can be used to assess the uncertainty in the calibrated model with a relatively modest computational complexity. We demonstrate the suitability and effectiveness of the SpRML formulation using a series of numerical experiments of two-phase flow systems in both Gaussian and non-Gaussian property distributions in petroleum reservoirs and successfully apply the method to an adapted version of the PUNQ-S3 benchmark reservoir model.  相似文献   

18.
三维反演解释是电磁法勘探发展的重要趋势,而如何提高三维反演的可靠性、稳定性和计算效率是算法开发者们目前的研究重点.本文实现了一种频率域可控源电磁(CSEM)三维反演算法.其中正演基于拟态有限体积法离散化,利用直接矩阵分解技术来求解大型线性系统方程,不仅准确、稳定,而且特别有利于含有大量发射场源位置的CSEM勘探情况;对目标函数的最优化采用高斯牛顿法(GN),具有近似二次的收敛性;使用预条件共轭梯度法(PCG)求解每次GN迭代所得到的法方程,避免了显式求解和存储灵敏度矩阵,减小了计算量.以上这些方法的结合应用,使得本文的三维反演算法准确、稳定且高效.通过陆地和海洋CSEM勘探场景中的典型理论模型的反演测试,验证了本文算法的有效性.  相似文献   

19.
Nonlinear determinism in river flow: prediction as a possible indicator   总被引:2,自引:0,他引:2  
Whether or not river flow exhibits nonlinear determinism remains an unresolved question. While studies on the use of nonlinear deterministic methods for modeling and prediction of river flow series are on the rise and the outcomes are encouraging, suspicions and criticisms of such studies continue to exist as well. An important reason for this situation is that the correlation dimension method, used as a nonlinear determinism identification tool in most of those studies, may possess certain limitations when applied to real river flow series, which are always finite and often short and also contaminated with noise (e.g. measurement error). In view of this, the present study addresses the issue of nonlinear determinism in river flow series using prediction as a possible indicator. This is done by (1) reviewing studies that have employed nonlinear deterministic methods (coupling phase‐space reconstruction and local approximation techniques) for river flow predictions and (2) identifying nonlinear determinism (or linear stochasticity) based on the level of prediction accuracy in general, and on the prediction accuracy against the phase‐space reconstruction parameters in particular (termed as the ‘inverse approach’). The results not only provide possible indications to the presence of nonlinear determinism in the river flow series studied, but also support, both qualitatively and quantitatively, the low correlation dimensions reported for such. Therefore, nonlinear deterministic methods are a viable complement to linear stochastic ones for studying river flow dynamics, if sufficient caution is exercised in their applications and in interpreting the outcomes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
地震层析成像反演中解的定量评价及其应用   总被引:11,自引:4,他引:7       下载免费PDF全文
对地震层析成像非线性问题线性化处理之后,各种反演算法归纳成为对不适定方 程的求解.地震层析成像反演算法的解的物理意义是给出地质结构,因此对于解的可靠性及 分辨率研究非常重要.然而许多反演算法不能给出解的评价方法,因而对解的可信度产生怀 疑.本研究根据解估计的分辨率矩阵的原理,提出LSQR(Least Square QR)算法解协方差矩 阵的评价算法,用相关分析可以为那些在求解过程中得不到分辨率矩阵的反演方法提供解的 定量评价.并用本文提出的解的定量评价方法试评了一个实际地壳模型的地震层析成像的 速度重建结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号