首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ≈140 and 200μm using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 ìm have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.  相似文献   

2.
We measure the local galaxy far-infrared (FIR) 60 to 100 μm colour–luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR–submillimetre surveys that have and will conduct deep extragalactic surveys at 250–500 μm. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in submillimetre galaxies near   z ∼ 2.5  , these new FIR–submillimetre surveys will directly sample the spectral energy distributions of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS . We have taken care to correct for the temperature bias and the evolution effects in our IRAS 60-μm-selected sample. We verify that our colour–luminosity distribution is consistent with the measurements of the local FIR luminosity function, before applying it to the higher redshift Universe. We compare our colour–luminosity correlation with recent dust–temperature measurements of submillimetre galaxies and find evidence for pure luminosity evolution of the form  (1 + z )3  . This distribution will be useful for the development of evolutionary models for Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and Spectral and Photometric Imaging Receiver (SPIRE) surveys as it provides a statistical distribution of the rest-frame dust temperatures for galaxies as a function of luminosity.  相似文献   

3.
We present upper limits on the 850-μm and 450-μm fluxes of the warm hyperluminous (bolometric luminosity     galaxies IRAS P09104+4109     and IRAS F15307+3252     , derived from measurements using the SCUBA bolometer array on the James Clerk Maxwell Telescope. Hot luminous infrared sources like these are thought to differ from more normal cold ultraluminous infrared     galaxies in that they derive most of their bolometric luminosities from dusty active galactic nuclei (AGNs) as opposed to starbursts. Such hot, dusty AGNs at high redshift are thought to be responsible for much of the mass accretion of the Universe that is in turn responsible for the formation of the supermassive black holes seen in the centres of local galaxies. The galaxy IRAS P09104+4109 is also unusual in that it is a cD galaxy in the centre of a substantial cooling-flow cluster, not an isolated interacting galaxy like most ultraluminous infrared galaxies. Previously it was known to have large amounts of hot     dust from IRAS observations. We now show that the contribution of cold dust to the bolometric luminosity is less than 3 per cent. Most ultraluminous infrared galaxies possess large amounts of cold dust, and it is now known that some cooling-flow cluster cD galaxies do as well. Yet this object, which is an extreme example of both, does not have enough cold gas to contribute significantly to the bolometric luminosity. We outline physical reasons why this could have happened. We then provide a discussion of strategies for finding hot dusty AGNs, given the limitations on submillimetre surveys implied by this work.  相似文献   

4.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

5.
We have undertaken a mid-infrared (MIR) search for new planetary nebulae (PNe) using the Spitzer Space Telescope GLIMPSE Galactic plane survey. This has involved searching extant GLIMPSE data products for morphologically appropriate structures, and investigating sources having IRAS colours similar to those of Galactic PNe. We have found 12 sources which have a high probability of being high-extinction PNe, and which possess MIR and IRAS colours, and shell morphologies similar to those of previously identified Galactic nebulae. Calibrated mapping of these structures and profiles in all four of the IRAC bands (3.6, 4.5, 5.8 and  8.0 μm  ) suggests that many (if not all) of the nebulae possess at least two primary structures: an interior high surface brightness shell, corresponding to what is probably the primary ionized zone, and a much weaker halo extending to very much greater distances from the nucleus. These latter regimes are particularly evident at longer MIR wavelengths (5.8 and  8.0 μm  ), and it is probable that they trace the nebular photodissociative regimes, where emission derives from small-grain continua and/or polycyclic aromatic hydrocarbon molecular bands. This latter behaviour has also been noted in previous analyses of Galactic PNe.  相似文献   

6.
Stars in the post-asymptotic giant branch (post-AGB) phase of evolution are surrounded by detached circumstellar envelopes containing dust which emits thermally in the mid- and far-infrared. Here we present 850-μm SCUBA photometry of nine candidate post-AGB stars. All targets are detected at 850 μm and we use these fluxes to estimate the envelope dust masses and, by comparison with the 100-μm IRAS fluxes, the dust emissivity index.  相似文献   

7.
We investigate the Galactic disc distribution of a sample of planetary nebulae characterized in terms of their mid-infrared spectral features. The total number of Galactic disc PNe with 8–13 μm spectra is brought up to 74 with the inclusion of 24 new objects, the spectra of which we present for the first time. 54 PNe have clearly identified warm dust emission features, and form a sample that we use to construct the distribution of the C/O chemical balance in Galactic disc PNe. The dust emission features complement the information on the progenitor masses brought by the gas-phase N/O ratios: PNe with unidentified infrared emission bands have the highest N/O ratios, while PNe with the silicate signature have either very high N enrichment or close to none. We find a trend for a decreasing proportion of O-rich PNe towards the third and fourth Galactic quadrants. Two independent distance scales confirm that the proportion of O-rich PNe decreases from     per cent inside the solar circle to     per cent outside. PNe with warm dust are also the youngest. PNe with no warm dust are uniformly distributed in C/O and N/O ratios, and do not appear to be confined to     They also have higher 6-cm fluxes, as expected from more evolved PNe. We show that the IRAS fluxes are a good representation of the bolometric flux for compact and IR-bright PNe, which are probably optically thick. Selection of objects with     should probe a good portion of the Galactic disc for these young, dense and compact nebulae, and the dominant selection effects are rooted in the PN catalogues.  相似文献   

8.
We have carried out a spectroscopic survey of 750 sources that are strong 25-μm emitters from the IRAS Faint Source data base. Many of these sources are previously unknown active galactic nuclei including new IRAS quasars, three of which we describe here: F21382−2659, Z06367−6845 and Z05558−5008. They are all radio and X-ray quiet, and compared to the known IRAS quasars they have similar 25-μm luminosities, L (25 μm), but lower values of L (25 μm)/ L ( B ). Their F (25 μm)/ F (60 μm) IRAS colours lie in the range 0.33 to 1.08, indicating the presence of relatively warm dust, presumably in a dusty torus surrounding the central source, and with temperatures similar to those of the known IRAS quasars. The quasar with the warmest dust, F21382−2659, exhibits broad (full width at half-maximum ∼4000 km s−1) asymmetric Balmer lines with H γ having an opposite asymmetry to the other broad lines; also H β (only) is double-peaked. Fe  ii is very weak in F21382−2659 but strong in the other two quasars, and the anticorrelation between Fe  ii and [O  iii ] holds as anticipated. Two of the quasars are unpolarized: although F21382−2659 is optically polarized (2.1 per cent at 4950 Å), we argue that this provides little insight into the orientation of its dust torus relative to the line of sight.  相似文献   

9.
Strömgren uvbyβ photometry observations obtained for 205 stars in the general direction of a void in the IRAS 100-μm emission from the Lupus dark cloud complex are presented and analysed. The colour excess versus distance diagram confirms the existence of a region depleted from interstellar material, which is also seen in the ROSAT soft X-ray background emission map. The distance to the surrounding material is estimated as being within the interval from 60 to 100 pc. This result is in disagreement with previous distance estimates to the supposed supernova that has been suggested as responsible for clearing the region from dust. As an alternative, the data presented support the suggestion that the void may have been produced by the detachment of material from the interface between Loop I and the Local Bubble as a consequence of hydromagnetic instabilities. Moreover, the distribution of colour excess as a function of distance supports a value of ∼150 pc as the most probable distance to the dark cloud known as Lupus 1.  相似文献   

10.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

11.
We present new data taken at 850 μm with SCUBA at the James Clerk Maxwell Telescope for a sample of 19 luminous infrared galaxies. Fourteen galaxies were detected. We have used these data, together with fluxes at 25, 60 and 100 μm from IRAS , to model the dust emission. We find that the emission from most galaxies can be described by an optically thin, single temperature dust model with an exponent of the dust extinction coefficient ( k λ ∝ λ − β ) of β ≃1.4–2. A lower β ≃1 is required to model the dust emission from two of the galaxies, Arp 220 and NGC 4418. We discuss various possibilities for this difference and conclude that the most likely is a high dust opacity. In addition, we compare the molecular gas mass derived from the dust emission, M 850 μm, with the molecular gas mass derived from the CO emission, M CO, and find that M CO is on average a factor 2–3 higher than M 850 μm.  相似文献   

12.
We present arcsec-resolution images at 8.2, 10.0 and 11.3 μm of the unusual young object WL 16 in Ophiuchus, which has an extended envelope of fluorescing hydrocarbon molecules. To the limit of achieved sensitivity, the faint 10.0-μm continuum has a surface-brightness distribution that is not distinguishable from those at 8.2 and 11.3 μm, where the luminosity is known to be dominated by the polycyclic aromatic hydrocarbon (PAH) emission features. We conclude that the 10-μm continuum either arises from non-equilibrium heating of small dust grains that are well mixed with the hydrocarbons or is quasi-continuous emission from the PAH particles themselves, rather than thermal equilibrium emission from macroscopic dust grains, and that there is no significant silicate absorption variation across the source. The extended hydrocarbon emission may trace a flattened, equatorial distribution of circumstellar material or arise in bipolar lobes. The former case is slightly favoured, based on currently available data, and would imply that WL 16 is a relatively evolved Herbig Ae star, the equatorial plane of which has been almost cleared of normal dust, leaving only fluorescing hydrocarbons and larger coagulated particles as a possibly transient fossil of the original circumstellar disc.  相似文献   

13.
We present matched-resolution VLA H  i and SCUBA 850-μm maps of 20 IRAS -bright galaxies. Of the galaxies observed, two were not detected in H  i and two were detected in absorption. The H  i distributions of the galaxies have a range of morphologies. Some of the systems appear H  i deficient in the central regions which could be due to a high conversion rate of H  i into molecules or H  i absorption. In contrast to the H  i , the 850-μm emission has a smooth distribution which is concentrated towards the optical centre of each galaxy. We also find evidence for 850-μm emission extending to the periphery of the optical disc in some of the galaxies. Finally, we note that the relative lack of 850-μm emission when compared with H  i does not necessarily mean that the atomic gas and dust do not have similar mass distributions.  相似文献   

14.
Maps of the 450- and 850-μm dust continuum emission from three star-forming condensations within the Lynds 1630 molecular cloud, made with the SCUBA bolometer array, reveal the presence of four new submillimetre sources, each of a few solar masses (two of which are probably class I and two of which are class 0), as well as several sources the existence of which was previously known. The sources are located in filaments and appear elongated when observed at 450 μm. They probably have dust temperatures in the range 10 to 20 K, in good agreement with previous ammonia temperature estimates. Attempts to fit their structures with power-law and Gaussian density distributions suggest that the central distribution is flatter than expected for a simple singular isothermal sphere.
Although the statistics are poor, our results suggest that the ratio of 'protostellar core' mass to total virial mass may be similar for both large and small condensations.  相似文献   

15.
We present SCUBA observations of the protomultiple system NGC 1333/IRAS 4 at 450 and 850 μm. The 850-μm map shows significant extended emission which is most probably a remnant of the initial cloud core. At 450 μm, the component 4A is seen to have an elongated shape suggestive of a disc. Also we confirm that, in addition to the 4A and 4B system, there exists another component 4C, which appears to lie out of the plane of the system and of the extended emission. Deconvolution of the beam reveals a binary companion to IRAS 4B. Simple considerations of binary dynamics suggest that this triple 4A–4BI–4BII system is unstable and will probably not survive in its current form. Thus IRAS 4 provides evidence that systems can evolve from higher to lower multiplicity as they move towards the main sequence. We construct a map of spectral index from the two wavelengths, and comment on the implications of this for dust evolution and temperature differences across the map. There is evidence that in the region of component 4A the dust has evolved, probably by coagulating into larger or more complex grains. Furthermore, there is evidence from the spectral index maps that dust from this object is being entrained in its associated outflow.  相似文献   

16.
We present a careful analysis of the point-source detection limit of the AKARI All-Sky Survey in the WIDE-S 90-μm band near the North Ecliptic Pole (NEP). Timeline analysis is used to detect IRAS ( Infrared Astronomy Satellite ) sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90-μm flux of a source. Combined with a robust noise measurement, the point-source flux detection limit at signal-to-noise ratio  (S/N) > 5  for a single detector row is  1.1 ± 0.1 Jy  which corresponds to a point-source detection limit of the survey of ∼0.4 Jy.
Wavelet transform offers a multiscale representation of the Time Series Data ( tsd ). We calculate the continuous wavelet transform of the tsd and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non- IRAS sources detected in timeline analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non- IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.  相似文献   

17.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

18.
Submillimetre mapping observations of the active edge-on spiral galaxy NGC 3079 are presented. These maps at 850 and 450 μm were made with the Submillimetre Common User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT).
The source structure at these wavelengths consists of a central unresolved source embedded in diffuse disc emission, similar to that displayed at 1.2 mm. The disc emission is fitted with two optically thin, isothermal dust models which give temperatures of 12 and 31 K, similar to those derived previously by Braine et al. The core component is well described by a single-temperature fit (∼32 K). The combined dust mass from these observations, using the same mass absorption coefficient as Devereux & Young (1990) is 3.5×108 M, of which ∼90 per cent resides in the cold component of the galactic disc. The effect of the cold dust component detected by SCUBA is thus to reduce the global gas-to-dust mass ratio from ∼1400 found in the above study to 85, very similar to the Galactic level. Calculations using the models of Draine & Lee and/or alternative molecular gas mass estimates yield gas-to-dust mass ratios in the range 60–190.
The data presented here, together with previously published 1.2-mm mapping observations and IRAS data, are inconsistent with detections made with the Infrared Space Observatory ( ISO ). In particular, the latter give an excess of flux at 200 and 180 μm relative to that predicted by our simple model fits (approximately a factor of 2–3).  相似文献   

19.
The optical spectrum of the carbon star IRAS 12311−3509 is dominated by the Merrill–Sanford emission bands of SiC2, by absorption and emission in the Swan system of C2, and by resonance emission lines of neutral metals. The infrared energy distribution is flat from 1 to 60 μm. These observations are interpreted as arising from a star with a cool dusty disc which is edge-on to the observer and obscures direct starlight. The infrared continuum is caused predominantly by absorption of stellar light by dust in the disc and re-emission at longer wavelengths. The optical stellar spectrum is seen by reflection off dusty material which lies out of the plane of the disc, and the molecular and atomic emission arises in the same geometry through resonance fluorescence. The object has similarities to the J-silicate stars, but may have a carbon-rich rather than oxygen-rich disc. A full spectroscopic assignment and discussion of the SiC2 bands and their intensities are given. Modelling of the rotational contours of the     band yields a rotational temperature of 250 K, indicating very cool gas.  相似文献   

20.
A deep Hα image of interlocking filamentary arcs of nebulosity has been obtained with a wide-field (≈30° diameter) narrow-band filter camera combined with a charge-coupled device as a detector. The resultant mosaic of images, extending to a galactic latitude of −65°, has been corrected for field distortions and had galactic coordinates superimposed on it to permit accurate correlations with the most recent H  i (21 cm), X-ray (0.75 keV) and FIR ( IRAS 100 μm) maps.
Furthermore, an upper limit of 0.13 arcsec yr−1 to the expansion proper motion of the primary 25° long nebulous arc has been obtained by comparing a recent Hα image obtained with the San Pedro Martir telescope of its filamentary edge with that on a Palomar Observatory Sky Survey E plate obtained in 1951.
It is concluded that these filamentary arcs are the superimposed images of separate shells (driven by supernova explosions and/or stellar winds) rather than the edges of a single 'superbubble' stretching from Barnard's Arc (and the Orion Nebula) to these high galactic latitudes. The proper motion measurement argues against the primary Hα-emitting arc being associated with the giant radio loop (Loop 2) except in extraordinary circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号