首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
Introduction In recent years some big cities in China commonly build subways in central urban areas to improve crowded surface transportation, and the subways usually are large-scale group cavities composed by two parallel cavities. Construction of large-scale group cavities will certainly affect the design ground motion near the cavities, and further affect seismic safety of the existing build-ings nearby. So it is of significance to estimate this effect on seismic design of the buildings. H…  相似文献   

2.
地下洞室群对地面运动影响问题的级数解答-P波入射.   总被引:12,自引:0,他引:12       下载免费PDF全文
采用波函数展开法,给出了平面P波入射下半空间中洞室群对地面运动影响问题的一个级数解答. 数值结果表明,地下洞室群对附近地面运动具有显著的放大作用.建议地铁等地下工程在规划和设计时,考虑工程建设后对沿线地面运动的影响.   相似文献   

3.

The growing use of underground structures, specifically to facilitate urban transportation, highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings. In this regard, the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method. To evaluate the effects, generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels’ depth, the distances between the tunnels, tunnel lining flexibility, and input wave frequency, have been presented. In addition, to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface, seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8 (CEN, 2006). The results underline the significant amplification effect of the box-shaped tunnels on the ground motions, specifically in the case of horizontal twin tunnels, which should be given more attention in current seismic design practices for surface structures.

  相似文献   

4.
Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three-dimensional finite-element analyses. Results of the analyses show that the spatially variable ground motion causes longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the properties of the ground change in the longitudinal direction.  相似文献   

5.
基于有效的土-结相互作用有限元数值模拟方法,利用有限元软件ABAQUS对水平及竖向地震共同作用下双线盾构隧道的地震响应进行分析研究。地震动输入选取近场地震Loma、ChiChi、Mammoth和WoLong的基岩水平及竖向加速度时程记录。结果表明,不同近场地震记录对隧道结构的作用不同,隧道的地震反应与场地性质及地震动的频谱特性密切相关。对比隧道在水平及竖向地震动共同作用下的响应与单向水平地震动作用下的响应,发现隧道的最大地震附加内力及其分布均发生较大的变化,在隧道结构抗震设计中需引起重视。另外,分析中还考虑了在双向地震动共同作用下,隧道间距、土-结接触面的摩擦系数、土-结相对刚度、输入的地震记录和竖向地震动相对强度对隧道地震响应的影响等,研究结果对隧道工程的抗震设计具有一定的参考价值。  相似文献   

6.
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.  相似文献   

7.

Although intensive research of the influence of ground motion duration on structural cumulative damage has been carried out, the influence of dynamic responses in underground tunnels remains a heated debate. This study attempts to highlight the importance of the ground motion duration effect on hydraulic tunnels subjected to deep-focus earthquakes. In the study, a set of 18 recorded accelerograms with a wide-range of durations were employed. A spectrally equivalent method serves to distinguish the effect of duration from other ground motion features, and then the seismic input model was simulated using SV-wave excitation based on a viscous-spring boundary, which was verified by the time-domain waves analysis method. The nonlinear analysis results demonstrate that the risk of collapse of the hydraulic tunnel is higher under long-duration ground motion than that of short-duration ground motion of the same seismic intensity. In a low intensity earthquake, the ground motion duration has little effect on the damage energy consumption of a hydraulic tunnel lining, but in a high intensity earthquake, dissipation of the damage energy and damage index of concrete shows a nonlinear growth trend accompanied by the increase of ground motion duration, which has a great influence on the deformation and stress of hydraulic tunnels, and correlation analysis shows that the correlation coefficient is greater than 0.8. Therefore, the duration of ground motion should be taken into consideration except for its intensity and frequency content in the design of hydraulic tunnel, and evaluation of seismic risk.

  相似文献   

8.
地铁隧道群对地震动的放大作用   总被引:1,自引:0,他引:1  
本文采用有限元方法在时域内研究了基岩上均匀场地中隧道群对地震动的放大作用,分析了隧道间距、人射地震波频谱等因素对隧道群附近地表地震动反应谱的影响.研究表明,隧道群对地震动具有显著的放大作用,放大作用的大小与隧道间距和人射地震波频谱有着密切关系;隧道之间存在相互作用,加速度峰值的最大值多大于单隧道情况,且水平加速度峰值的...  相似文献   

9.
To estimate the amplification characteristics of ground motions in the heavily damaged belt zone in Kobe City during the 1995 Hyogo-ken Nanbu earthquake, 3D wave propagation analyses of a 2D deep irregular underground structure model with a vertical discontinuity were performed at an early stage as a preliminary and qualitative study. The hyperelement method was applied to the analyses for incident plane waves expected from the wavefields due to the source mechanism. The observation records at Kobe University of the rock site were used as control motions. The ground motions on the engineering bedrock (assumed to be on the free surface of the Osaka group layers having a shear velocity of 500 m/s) and at ground surface were calculated. The effects of the deep irregular underground structure and shallow surface layers on the ground motion amplification are discussed. Although there are qualifications due to the uncertain characteristics of the input rock motion and shear wave velocities of the underground structure, the analytical results show that the ground motion in the heavily damaged belt zone were amplified due to the focusing effect of the deep irregular underground structure as well as the shallow surface layers, and that the calculated peak ground acceleration (PGA) distribution coincided closely with the distributions of structural damage. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
Earthquake response of underground lifeline engineering is investigated by the method of ultrasonic model experiments in this paper. From general field conditions, two models of underground lifeline engineering, one for non-uniform field and the other for uniform field, are designed based on the similarity principle. Besides analysis of seismic phases, a series of analyses especially on particle vibration are carried out. The results show that: The shorter the epicentral distance, the greater are the intensity variation and the change rate of intensity variation of earthquake ground motion, so the more disadvantageous to underground pipelines. In soft covering layer, compressional waves mainly cause radial flexures deformation, but shear wave result in axial dilation deformation of the pipelines; when the thickness of the covering layer is smaller (less than seismic wave length), the rhythmic variation of the intensity of earthquake ground motion is controlled mainly by the wave length of seismic waves in the bedrock. The property of the covering layer has considerable effect on earthquake ground motion. For different covering layers, their effect on each component of earthquake ground motion is not the same. Owing to the effect of wave propagation, the ground is in different states of particle vibration at different times, and there is considerable difference in phase and intensity of particle vibration between two different covering layers near their junction line or surface. Because underground lifelines tend to vibrate with the particles of the earth around it, this results in different deformation of underground pipelines under different conditions. So, it is necessary to take corresponding anti-seismic countermeasures for pipelines according to their practical situations. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 104–110, 1992. This paper is part of the research supported by Funds of Doctoral Faculty of National Education Committee.  相似文献   

11.
Current codes of practice in assessing the blast ground motion effect on structures are mainly based on the ground peak particle velocity (PPV) or PPV and the principal frequency (PF) of the ground motion. PPV and PF of ground motion from underground explosions are usually estimated by empirical formulae derived from field blast tests. Not many empirical formulae for PF, but many empirical formulae for PPV are available in the literature. They were obtained from recorded data either on ground surface or in the free field (inside the geological medium). Owing to the effect of surface reflection, blast motions on ground surface and in the free field are very different. But not many publications in the open literature discuss the differences of blast motions on ground surface and in the free field. Moreover, very few publications discuss the blast ground motion spatial variation characteristics. As ground motion directly affects structural responses, it is very important to study its characteristics in order to more reliably assess its effects on structures. In this paper, a validated numerical model is used to simulate stress wave at a granite site owing to explosion in an underground chamber. Using the simulated stress wave, the relations such as PPV and PF attenuation as well as spatial variation of motions on ground surface and in the free field are derived. Discussions on the differences of the characteristics of surface and free field motions are made. Results presented in this paper can be used in a more detailed assessment of ground motion effect on structures.  相似文献   

12.
Recent researches have revealed that the seismic ground response above tunnels can be different from the free-field motion during earthquakes. Nevertheless, to the best of the authors׳ knowledge, neither building codes nor seismic microzonation guidelines have yet considered this matter. In the present study, the seismic response of a linear elastic medium including a buried unlined tunnel subjected to vertically propagating incident SV and P waves are addressed. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a tunnel is increased in long periods. The variation of the amplification factor and characteristic period of the medium versus the buried depth of the tunnel are depicted as the major results of this study. Some simple and useful relations are proposed for estimating the seismic microzonation of the areas underlain by tunnels. These relations can also be used for the preliminary seismic design of structures located on underground structures.  相似文献   

13.
Active geological and young faulted zones have made Iran’s territory one of the most seismological active areas in the world according to recent historical earthquakes. Some of the deadliest earthquakes such as Gilan 1990 and Kermanshah 2018 caused tens of thousands fatalities. If such violent earthquakes affect strategical structures of a country, indirect losses would be more concerning than direct losses. Nowadays there is no doubt about the vital role of tunnels and underground structures in urban areas. These facilities serve as nonstop functional structures for human transportation, water and sewage systems and underground pedestrian ways. Any external hazard subjected to underground spaces, such as earthquake could directly affect passenger’s lives and significantly decrease whole system reliability of public transportation. Commonly two earthquake levels of intensities, Maximum Design Earthquake (MDE) and Operating Design Earthquake (ODE) were used in seismic design of underground structures. However, uncertain nature of earthquakes in terms of frequency content, duration of strong ground motion, and level of intensity indicate that only the two levels of earthquake (ODE and MDE) cannot cover the all range of possible seismic responses of structures during a probable earthquake. It is important to evaluate the behavior of tunnel under a wide range of earthquake intensities. For this purpose, a practical risk-based approach which is obtained using the total probability rule was used. This study illustrates a framework for evaluation seismic stability of tunnels. Urban railway tunnels of Tehran, Shiraz, Ahwaz, Mashhad, Isfahan and Tabriz were considered as study cases. Nominal value of seismic risk for three main damage states, including minor, moderate and major were calculated.  相似文献   

14.
禹海涛  李晶  王祺 《地震学报》2022,44(1):123-131
为探讨“最不利地震动”概念在地下结构抗震设计中的适用性,以软土地铁区间隧道为对象建立相应的地层-结构动力分析模型。以直径变形率为分析指标,基于动力时程方法研究18条不同输入地震动作用下隧道结构动力响应的分布及差异性,得出基于隧道地震响应的输入地震动排序,并通过调幅手段对比分析了地面峰值加速度(PGA)和隧道埋深变化对隧道结构地震动响应排序的影响规律。最后,评价了不同输入地震动参数,包括峰值加速度、峰值速度、峰值位移、绝对累积速度(CAV)和阿里亚斯(Arias)强度(IA)与隧道地震响应之间的相关性。分析结果表明:① 随着PGA从0.5 m/s2增加到2 m/s2,地震动排序发生明显变化,并且不同输入地震动引起的隧道地震响应差异显著提高,最不利地震动引起的直径变形率与平均值的比值从1.1增加到1.9;② 隧道从浅埋到深埋的过程中,地震动排序结果基本保持不变;③ PGA为2 m/s2时,隧道地震响应与基岩面峰值速度(PBV)的相关性最好,相关系数达到0.94,其次是与基岩面峰值位移(PBD)和IA,相关系数分别为0.62和0.48,相关性最差的是基岩面峰值加速度(PBA)和CAV,相关系数仅为0.37和0.22。研究结论可为今后软土隧道的输入地震动选择提供科学依据。   相似文献   

15.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

16.
基于强震动记录确定的场地卓越周期   总被引:1,自引:0,他引:1  
本文介绍了3种根据场地强震动记录获取场地卓越周期的方法: ① 地表记录的傅里叶谱分析法; ② 地表水平/垂直傅里叶谱比法; ③ 地表/地下傅里叶谱比法. 基于日本强震动观测台网KiK-net中两个基岩台站和两个Ⅲ类场地台站获取的数百条强震动记录, 分别使用上述3种方法确定场地的卓越周期, 并对比分析各种方法的优缺点及其适用情况. 结果表明: 对于基岩场地, 由于记录信息复杂, 局部场地条件对地震动影响较小, 地震动自身特性突出, 导致3种方法所得到的结果均比较分散; 对于土层场地, 场地条件影响比较显著, 3种方法基本都可以得到一个较为准确的数值; 但对于某些场地, 地表水平/垂直傅里叶谱比法所得结果存在不确定性, 相比之下, 地表/地下傅里叶谱比法则能给出一个更为准确的场地卓越周期值.   相似文献   

17.
A theoretical approach is presented to study the antiplane seismic response of underground structures, subjected to the incidence of both plane and cylindrical waves. The structure is assumed to be a circular inclusion embedded in a homogenous, isotropic and linear visco‐elastic halfspace. The inclusion may consist either of a cavity, with or without a ring‐shaped boundary, or it may be filled in with a linear‐elastic material, without loss of generality. The analytical solution is obtained using expansions of wave functions in terms of Bessel and Hankel functions, relying on the technique of images and the use of Graf's addition theorem to enforce the boundary conditions. The effects of underground cavities on surface earthquake ground motion are studied as a function of the size of the cavity, its embedment depth, the frequency content of the excitation, the incidence angle and the distance from the axis of symmetry of the cavity itself. A simple application of Rayleigh's method allows us to verify that the ground surface response is dominated by the fundamental vibration mode of the portion of soil between the cavity and ground surface itself, in the frequency range of interest for engineering purposes. A simple relationship to estimate the fundamental natural frequency as a function of the embedment depth of the cavity is given. Finally, amplification factors on response spectra are obtained, to provide a practical insight into the effect of an underground cavity on surface ground motion during real earthquakes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and El Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered.  相似文献   

19.
地铁车站的强地震反应分析及设计地震动参数研究   总被引:1,自引:0,他引:1  
进行了地铁地下车站的地震反应分析,探讨了地铁车站地震反应的主要影响因素,介绍了地面与基岩间峰值相对位移的确定及其在地下结构抗震设计中的应用,初步研究了地铁车站埋深对结构地震反应的影响。分析结果表明,地震引起的地基变形是影响地下结构动力反应的决定性因素,结构峰值变形反应与自由场峰值变形反应之间近似存在简单的线性关系;相对于设计基本地震加速度,地面与基岩间峰值相对位移(PGRD)对于地下结构抗震分析及设计是一种更为合理的设计地震动参数。  相似文献   

20.
地面脉动与地震地面运动之间有没有关系?是什么关系?众说不一。1976年松潘地震记录提供了探讨这一问题的条件。我们对台址进行了各种工作之后,得出的结论是:(1)地震地面运动加速度和富氏谱峰值随震级而增大;脉动幅值及谱幅值随测点高程及地表沉积层厚度而加大。(2)同一地区脉动和不同序列地震记录的幅值及谱幅值的最大值,均有一定方向性。(3)同一序列地震谱曲线特征极为相似。(4)一层穿斗木架房屋结构对地面脉动频谱特性没有影响;而后者在前者的谱曲线上有明显反应。结论:从1976年松潘地震文县台址的资料分析来看,地面脉动频谱特性在地震地面加速度谱形态或特征方面关系不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号