首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
马林伟  卢育霞  王良  孙译 《地震工程学报》2016,38(3):373-381,390
研究黄土丘陵河谷场地在地震作用下强地面运动特征的变化情况,可以揭示强震对该类场地上震害的触发机理。结合黄土高原的地貌特征,建立具有代表性的动力数值分析模型,通过输入不同幅值、频谱特性和持续时间的地震波,对起伏地形和覆盖黄土层共同影响下的黄土河谷场地进行地震反应分析。结果表明:黄土层和地形耦合作用控制了地表的PGA变化,使其趋于复杂,在同一输入波不同振幅作用下,与基岩河谷各测点相比,黄土覆盖河谷场地的地震动频谱幅值均有所增加,并且频谱主峰均向高频移动。在不同地震波输入下,场地不同部位的固有频率受地形高程和土层影响;而地震动大小和频谱幅值不仅与场地的基本频谱和地形起伏有关,也与输入地震波的频谱成分相关。输入波PGA与地震频谱特征都不变时,同一场地输出的地震频谱形状具有相似的特征,随着地震持时增长,能量向场地基本频率附近集中,从而可能导致场地上相应频率建筑物震动幅值增加,造成累积破坏。  相似文献   

2.
土层结构对汉源烈度异常的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
汶川MS8.0大地震在远离震中近200 km的汉源县县城产生了高烈度异常, 其原因比较复杂.为了分析土层结构对汶川大地震中汉源县老县城高烈度异常的影响, 在汉源县城震害科学考察基础上, 依据地震烈度异常的分布情况, 在背后山滑坡前缘地带布设5个工程地质勘察钻孔, 获得了汉源县老县城场地土层结构资料.在现场测试和室内试验的基础上, 给出了汉源县老县城场地各层土体动力学参数.本文利用汶川地震九襄强震台的强震记录, 结合其台站的场地资料反演给出了汉源县老县城的基岩地震动时程, 作为地震反应分析的基岩输入地震动.在此基础上利用土层地震反应一维等效线性方法对汉源县老县城场地进行了地震反应分析, 并将计算所得结果与Ⅵ度区其它强震台站获得的强震记录进行比较.研究结果表明, 汉源县老县城土层结构对地震动的放大作用导致地表地震动异常, 是汉源县老县城高烈度异常的主要原因之一.   相似文献   

3.
2008年11月10日在青海柴达木盆地北缘发生了大柴旦M_W6.3地震,为了研究该地震的区域地震波传播与地面运动特征,本文利用地质资料和地壳速度结构研究成果,构建了柴达木盆地及周边区域三维传播介质模型,采用有限差分方法模拟了大柴旦地震波场传播过程以及地面运动分布特征.结果表明,柴达木盆地对波场传播有明显影响,表现为地震波传入盆地后在边界产生次生面波,盆地沉积物对地震波具有围陷作用,地震地面运动在盆地内振幅增大、持时延长.模拟结果给出的地震地面运动峰值速度分布以及理论地震图均和观测结果符合较好,反映数值模拟较好地给出了观测地面运动的主要特征以及传播介质模型的合理性.  相似文献   

4.
In order to examine the applicability of ground‐shaking mapping techniques to a near‐field earthquake, a peak ground velocity map of the 1995 Hyogo‐ken Nanbu, Japan earthquake computed from seismic zoning methods that consider the effects of geological conditions is compared with the actual observed intensity map. When computing the ground‐shaking map, the site amplification at each site is calculated in terms of the average shear‐wave velocity of the ground estimated from the corresponding geomorphological conditions. This map shows a relatively good agreement with the observed intensity map. However, the computations provide smaller values for certain disastrous areas of the earthquake, where the effects on ground motion of a deep, irregular underground structure have been reported. The effect of such structures on site response is examined implementing 2D FEM analyses, thereby being also incorporated into the method. Results considering the effect of the irregular underground structure show better agreement with the observed intensity map. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Specially designed arrays of strong motion seismographs located near earthquake sources are required for engineering studies of the near-source properties and the spatial variation of seismic waves. The SMART-1 array in Taiwan provides good records for this type of study. Careful study of the observed strong motion data permits the identification of wave types, directions and apparent wave velocities. In this paper, a principal direction ratio R (f,α) is defined; this indicates the principal direction of the motion (along a nearly straight line) within the range 0 < R < 1. Vertical motion of the ground is also included in this study. Orbit spectrum analysis is used to verify the identification of wave directions and wave types. The spatial variation of seismic waves along the principal direction is studied. From frequency-domain analysis, mathematical models of the spatial variation of ground displacement are developed using a wave-number spectrum and the cross-spectral density function between two spatial coordinates; these models in turn can provide two alternative models for the random vibration analysis of extensive structures subject to multiple point seismic excitation. The SMART-1 array data gathered during the January 29, 1981 earthquake also are used to demonstrate calculation of the ground strains and differential movements of the array site. From time-domain analysis, the spatial variation of seismic waves is defined for ground motion along the identified principal direction. The time variation of evolutionary spectra characterized by frequency-dependent parameters is used for this formulation. The SMART-1 array data again form the basis for discussion of the spatial variation of model parameters.  相似文献   

6.
邵帅  邵生俊    马纯阳  王平 《世界地震工程》2019,35(4):162-170
地震作用下,饱和砂土地层地铁车站的动力反应特征是城市轨道工程抗震的关键问题。以太原地铁新近沉积粉细砂地层地铁工程为对象,通过模拟地震运动输入的饱和砂土地基地下结构的振动台模型试验,分析了不同峰值加速度地震作用下饱和砂土与地下结构相互作用的动力反应性状。研究了地震波作用的放大效应与频率特征,动孔压比增长发展过程和液化区域分布,以及动土压力的变化规律。表明加速度放大系数为1.5~2.0;0.1~0.25g峰值加速度地震作用下饱和砂土均产生动孔隙水压力累计发展;0.3g峰值加速度地震作用下饱和砂土产生液化,抑制了土与地下结构的振动放大效应,地表面大量冒水,结构模型出现了明显上浮,地下结构两侧产生震陷。  相似文献   

7.
State of the art in modeling, synthetics, statistical estimation, and engineering applications of strong ground motion is reported in this paper. In particular, models for earthquake wave motion are presented, in which uncertainties both in the earth medium and the seismic source are taken into consideration. These models can be used to synthesize realistic strong earthquake ground motion, specifically near-field ground motion which is quite often not well recorded in real earthquakes. Statistical estimation techniques are also presented so that the characteristics of spatially-correlated earthquake motion can be captured and consequently used in investigating the seismic response of such large scale structures as pipelines and long-span bridges. Finally, applications of synthesized strong ground motion in a variety of engineering fields are provided. Numerical examples are shown for illustration.  相似文献   

8.
借鉴弹性波动力学理论和爆破地震应力计算方法,结合地震波在岩层中的折射效应,以地震波加速度为基础数据,分析岩体在地震波作用下的受力。以汶川地震影响下的龙门山前陆盆地地下岩层的受力变形情况为例,通过计算分析和数值模拟,证实所用方法在求解分析地震波在各向同性岩石层间传播动力的可行性。同时验证汶川地震造成龙门山前陆盆地地下深部地层的断层破坏。   相似文献   

9.
A physics‐based numerical approach is used to characterize earthquake ground motion due to induced seismicity in the Groningen gas field and to improve empirical ground motion models for seismic hazard and risk assessment. To this end, a large‐scale (20 km × 20 km) heterogeneous 3D seismic wave propagation model for the Groningen area is constructed, based on the significant bulk of available geological, geophysical, geotechnical, and seismological data. Results of physics‐based numerical simulations are validated against the ground motion recordings of the January 8, 2018, ML 3.4 Zeerijp earthquake. Taking advantage of suitable models of slip time functions at the seismic source and of the detailed geophysical model, the numerical simulations are found to reproduce accurately the observed features of ground motions at epicentral distances less than 10 km, in a broad frequency range, up to about 8 Hz. A sensitivity analysis is also addressed to discuss the impact of 3D underground geological features, the stochastic variability of seismic velocities and the frequency dependence of the quality factor. Amongst others, results point out some key features related to 3D seismic wave propagation, such as the magnitude and distance dependence of site amplification functions, that may be relevant to the improvement of the empirical models for earthquake ground motion prediction.  相似文献   

10.
选取了50条实际地震动,采用一维场地等效线性化方法分别对均匀半空间场地和成层半空间场地进行地震响应分析,同时选择效益性作为判别标准来探究最优地震动峰值指标(峰值加速度PGA,峰值速度PGV,峰值位移PGD)随埋深变化的规律.研究结果表明:对于选取的两类场地,最优地震动峰值指标均随埋深的改变而变化,埋深浅时PGA效益性最...  相似文献   

11.

Although intensive research of the influence of ground motion duration on structural cumulative damage has been carried out, the influence of dynamic responses in underground tunnels remains a heated debate. This study attempts to highlight the importance of the ground motion duration effect on hydraulic tunnels subjected to deep-focus earthquakes. In the study, a set of 18 recorded accelerograms with a wide-range of durations were employed. A spectrally equivalent method serves to distinguish the effect of duration from other ground motion features, and then the seismic input model was simulated using SV-wave excitation based on a viscous-spring boundary, which was verified by the time-domain waves analysis method. The nonlinear analysis results demonstrate that the risk of collapse of the hydraulic tunnel is higher under long-duration ground motion than that of short-duration ground motion of the same seismic intensity. In a low intensity earthquake, the ground motion duration has little effect on the damage energy consumption of a hydraulic tunnel lining, but in a high intensity earthquake, dissipation of the damage energy and damage index of concrete shows a nonlinear growth trend accompanied by the increase of ground motion duration, which has a great influence on the deformation and stress of hydraulic tunnels, and correlation analysis shows that the correlation coefficient is greater than 0.8. Therefore, the duration of ground motion should be taken into consideration except for its intensity and frequency content in the design of hydraulic tunnel, and evaluation of seismic risk.

  相似文献   

12.
为研究高层RC框架结构罕遇地震下的易损性,设计了一个7度区典型11层RC框架结构。采用IDA方法进行时程分析,以地震动峰值地面加速度和结构第一自振周期对应的谱加速度为地震动强度指标,最大层间位移角为结构损伤指标,分别得到了单一地震动强度和双地震动强度参数下的IDA曲线和失效概率,绘制了双地震动强度参数下易损性曲面,并对单一地震动强度和双地震动强度参数下的易损性分析结果进行了对比。结果表明:罕遇地震下,采用双地震动强度参数结构失效概率明显低于采用单一地震动强度参数结构失效概率;对高层RC框架结构,采用双地震动强度参数进行易损性分析反映的地震动信息更全面;采用双地震动强度参数得到的结构失效概率公式更能真实量化不同强度地震作用下结构的失效概率。  相似文献   

13.
Introduction In1564,an Italian man named Jacopo Gastaldi(XIE,1958)presented the first macroseismic intensity scale in the world,which based on the building damage and the ground surface failure after an earthquake.Today the seismic intensity has developed into an indispensable important concept,which applies to seismology and earthquake engineering,however it was just used to de-scribe earthquake damage while the concept of intensity was established.With this concept,seis-mologist can estima…  相似文献   

14.
地下地震动频谱特点研究   总被引:6,自引:0,他引:6  
本以美国加州强震观测计划(CSMIP)的6个岩土工程台阵的429条地表和地下地震动程为数据基础,按照各台阵场地土层分布情况将台阵分为七层和“上层/基岩”两类。对于同一类场地,将其中的各次地震,按照震级的大小将其分为三类;对于同一类地震,首先计算各地震的水下分量5%阻尼的反应谱以及相应的标准反应谱,并得到各深度测点相对于最深处测点的反应谱比值,分析比较两类场地下各深度反应谱的特点,另外,傅里叶谱也是本分析的一部分,通过对不同深度地下地震动的反应谱和傅氏谱的比较,得到了一些较有意义的结论,以供工程参考。  相似文献   

15.
The apparent horizontal propagation velocity, that is the propagation velocity of seismic waves with respect to the ground surface, is discussed in this paper. This parameter is needed to determine the effects of earthquakes on long structures such as bridges and buried pipelines as well as the torsional rotation of foundations of multi-storey buildings. A time window intensity tensor introduced by Penzien and Kubo is used herein to determine the predominant directions of ground motion during an earthquake. Considering the reflection of waves at a free surface, an approximate relationship between the predominant direction and the angle of incidence of body waves with respect to the ground surface is presented. Knowing the material properties of the top layer and the angle of incidence, the desired propagation velocity with respect to the ground surface is readily calculated. The median value of the apparent propagation velocity of shear waves for near field sites which recorded the 1971 San Fernando earthquake was determined to be about 2-1 km/s using the above method. A similar value for the 1979 Imperial Valley earthquake is 3·7 km/s. These values are consistent with the range of values for the apparent propagation velocity determined by other researchers.  相似文献   

16.
Conventional damage prediction methods for lifeline structures are primarily based on peak ground motion measurements. However, line structures such as lifelines suffer damage that is mainly induced by the strain of the ground and therefore are likely to be vulnerable to sharp spatial changes in the ground motion. In this study, we propose a measure for evaluating the damage incurred by underground water supply pipelines based on the spatial gradient of the peak ground velocity (PGV), in an attempt to quantify the effects of the geospatial variabilities in the ground motion on pipeline damage. We investigated the spatial distribution of the damage caused to water pipelines during the Niigata‐ken Chuetsu earthquake on October 10, 2004 (Japan Meteorological Agency magnitude (MJMA) of 6.8) and the Kobe earthquake on January 17, 1995 (MJMA7.3) and compared the surveyed damage with the PGV distribution as well as with the gradients of the PGV calculated around the damage areas. For the Kobe earthquake, we used the PGV distribution obtained by the strong‐motion simulation performed by Matsushima and Kawase 1 . In case of the Chuetsu earthquake, we estimated the ground motion using a broadband‐frequency‐based strong‐ground‐motion simulation method based on a multiasperity source model. In both cases, we calculated the gradients of the PGV along the geographical coordinates, with the amplitude of the PGV gradient vector being employed as the damage estimator. Our results show that the distribution of damage to underground water supply pipelines exhibits a greater correlation with the gradients of the PGV than with the PGV itself. Thus, the gradient of the PGV is a useful index for preparing initial‐screening hazard maps of underground facilities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
A series of housing collapses and other serious damage was caused by the 2008 Wenchuan MS 8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicenter, and which showed a remarkable seismic intensity anomaly. The seismic disasters are closely related to the seismic response characteristics of the site, therefore, the systematic study of the far-field seismic response law of the Wenchuan earthquake in the Loess Plateau is of great significance to prevent the far-field disaster of great earthquake. In this paper, the seismic acceleration records of several bedrock stations and loess stations from the seismogenic fault of the Wenchuan earthquake to the Loess Plateau were collected, and the attenuation law of ground motion along the propagation path and the characteristics of seismic response on the loess site are studied, and the mechanism of amplification effect of ground motion is analyzed based on the dynamic feature parameters of the loess site obtained through the HVSR method. Taking a typical loess site of thick deposit as the prototype, a series of shaking table tests of dynamic response of loess site models with different thicknesses were carried out. Amplification effect, spectral characteristics of acceleration in model sites were analyzed under the action of a far-field seismic wave of the Wenchuan earthquake. The results show that seismic attenuation on the propagation path along the NE strike of the seismogenic fault to the Loess Plateau is slower than that in other directions, and the predominant period range of ground motion on bedrock site of the Loess Plateau presents broadband characteristics. Because the natural periods of loess sites with thick deposits are within the predominant period range of bedrock input wave, loess sites appear significant amplification effect of ground motion, the horizontal acceleration of ground motion exceeds 0.1 ?g, the seismic intensity reaches 7°. The thicker the loess deposit is, the more significant the change of spectral characteristics of ground motion on loess sites, and the narrower the predominant period range of ground motion becomes, and the closer it is to the natural period of loess sites. Therefore, for some old houses on thick loess sites, the poor seismic performance and strong seismic response eventually led to their collapses and damages because their natural periods are very close to the predominant period of ground motion of the Wenchuan earthquake on thick loess sites; For these damaged high-rise buildings, the resonance effect might be the main reason for their damages because their natural periods are included in the predominant period range of ground motion of the Wenchuan earthquake on thick loess sites.These research results would provide a basis for seismic disasters prediction and evaluation and seismic design of construction engineering in the Loess Plateau.  相似文献   

18.
Soils with spatial variability are the product of natural history. The mechanical properties tested by soil samples from boreholes in the same soil layer may be different. Underground structure service in surrounding soils, their seismic response is controlled by the deformation of the surrounding soils. The variability of soil mechanical parameters was not considered in the current research on the seismic response of underground structures. Therefore, a random field model was established to describe the spatial variability of surrounding soils based on the random field theory. Then the seismic response of underground structures in the random field was simulated based on the time-domain explicit global FEM analysis, and the soil mechanical parameters and earthquake intensity influencing the seismic response of surrounding soils and underground structures were studied. Numerical results presented that, the randomness of soil parameters does not change the plastic deformation mode of surrounding soils significantly. The variation coefficients of inter-story deformation of structures and lateral deformation of columns are much smaller than that of mechanical parameters, and the randomness of soil parameters has no obvious effect on the structural deformation response.  相似文献   

19.
张佩  刘文义  袁艺  李君 《中国地震》2018,34(1):1-13
旋转地震学是研究由天然地震、爆破和周围环境振动引起的地面旋转运动的新兴学科。对于它的研究不仅有助于对质点运动(平移运动、旋转运动和形变)进行完整的描述,而且对广义地球物理学,如强地面运动地震学、地震工程学、地震物理学、地震仪器等的研究也有重要指导意义。本文系统介绍了旋转运动在地震学中4个方面的应用。首先,介绍基于平移运动和旋转运动的共同测量,得出了计算远震瑞利波和勒夫波相速度的理论公式,并以西伯利亚地震为例,得出台站附近的相速度结构;其次,利用环形激光仪仅对地震SH波敏感的特性,分离P波和S波,分辨海洋噪声和面波,确定海洋噪声的反方位角;然后,介绍利用旋转传感器对自由振荡的长周期环形模式的观测;最后,对包含旋转观测量的多参数反演问题的重要性和实用性进行了阐述,并分析了旋转地震学研究现存的问题。  相似文献   

20.
Viewing from the energy angle and taking the Beijing depression as an example, this paper studies the effects of underlying geological structures, mainly bedrock topography and bedrock faults, on the propagation of seismic waves and discusses the effects of the overlying soil layer on seismic waves. From the study, some conclusions are drawn as follows:
  1. Underlying bedrock faults affect the duration, frequency spectra and characteristics of energy distribution of seismic waves.
  2. Underlying bedrock topography changes the field of ground motion not only because the bedrock at different places receives different amounts of energy from the same source but also because its asperities diverge or converge seismic waves.
  3. Overlying soil layer is able both to absorb and to amplify seismic waves.
In the paper, the idea of expressing the intensity of seismic waves in terms of energy is put forward. Comparison between the expressions of the seismic wave intensity in terms of energy and the maximum amplitude shows that the former is better than the latter in reflecting the effects of underlying geological structures on seismic wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号