首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

2.
Two levels of triple-hot-film and sonic anemometers were deployed on a 5.5-m towerduring the Cooperative Atmospheric Surface Exchange Study (CASES-99) in October1999. Each triple-hot-film probe was collocated 50 mm from the sonic sensing path ona common boom. Various problems with using triple-hot-films in the atmosphere toresolve wind components are addressed including the derivation of a yaw angle correction using the collocated sensors. It was found that output voltage drift due to changes in environmental temperature could be monitored and corrected using an automated system. Non-unique solutions to heat transfer equations can be resolved using a collocated sonic anemometer. Multi-resolution decomposition of the hot-film data was used to estimate appropriate day and night averaging periods for turbulent flux measurements in and near the roughness sub-layer. Finally, triple-hot-film measurements of mean wind magnitude (M), turbulent kinetic energy (TKE), sensible heat flux (H), and local friction velocity (u*) are compared to those of the collocated CSAT3 sonic anemometers. Overall, the mean wind magnitudes measured by the triple-hot-film and the collocated sonic sensorswere close, consistent and independent of stability or proximity to the ground. The turbulent statistics, TKE, u*, and H, measured by the two sensor systems were reasonably close together at z = 5 m. However, the ratio of sonic measurement/hot-film measurement decreased toward the ground surface, especially during stable conditions.  相似文献   

3.
Occurrences of intermittent turbulence in very stable conditions during theCASES-99 field study near Leon, Kansas were detected at several sites separatedby horizontal distances from 1 km to 25 km using sonic anemometers, minisodarsand a laser scintillometer. Periods with significant turbulent heat fluxes wereseparated by extended quiescent periods with little or no flux, and most of theflux during a night was realized in relatively small fractions (<20%) of thetotal time. There appeared to be no relationship between this intermittencyfraction and the median z/L (z being height and L the Obukhov length)value for the night, although overall sensible heat flux values on very stablenights were significantly less than those on less stable nights. The intermittencyfraction at 7 m was found to increase with mean wind speed at 20 m and, to alesser extent, with wind shear between 20 m and 30 m. While correspondenceof turbulent episodes at two sites separated by 1 km was common, it was less common at separations on the order of 20 km. There were time periods, however, during which enhanced turbulence levels were seen nearly simultaneously at large separation distances. Turbulence episodes were found to propagate upward or downward at different times with no readily defined large-scale controlling mechanism.  相似文献   

4.
The speed of sound in moist air is discussed and a more accurate value for the coefficient of the linear dependence of sonic temperature on specific humidity is proposed. An analysis of speed-of-sound data measured by three sonic anemometers in a climate chamber and in the field shows that the temperature response of each instrument significantly influences not only the determination of sonic temperature, but also its fluctuations. The corresponding relative contribution to the error in the evaluation of the temperature fluctuations and the turbulent heat fluxes can be as high as 40%. The calibration procedure is discussed and a method of correction is proposed.  相似文献   

5.
The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterion—closure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several post-field data processing methods were compared. The differences in methodology resulted in deviations of 10% for the sensible heat flux and of 15% for the latent heat flux for an averaging time of 30 min. These disparities were mostly due to different sensor separation corrections and a linear detrending of the data. The impact of different instrumentation on the resulting heat flux estimates was significantly higher. Large deviations from the reference system of up to 50% were found for some sensor combinations. However, very good measurement quality was found for a CSAT3 sonic together with a KH20 krypton hygrometer and also for a UW sonic together with a KH20. If these systems are well calibrated and maintained, an accuracy of better than 5% can be achieved for 30-min values of sensible and latent heat flux measurements. The results from the sonic anemometers Gill Solent-HS, ATI-K, Metek USA-1, and R.M. Young 81000 showed more or less larger deviations from the reference system. The LI-COR LI-7500 open-path H2O/CO2 gas analyser in the test was one of the first serial numbers of this sensor type and had technical problems regarding direct solar radiation sensitivity and signal delay. These problems are known by the manufacturer and improvements of the sensor have since been made. The National Center for Atmospheric Research is supported by the National Science Foundation.  相似文献   

6.
Direct measurement of turbulent fluxes on a cruising ship   总被引:1,自引:0,他引:1  
The result of an attempt at the direct measurement of turbulent fluxes on the top of the mast of a cruising ship is presented. The three-dimensional components of wind relative to the ship measured by a sonic anemometer are corrected for ship motion; from these the fluxes of momentum, sensible heat and water vapor are computed using the outputs of a fine-wire thermocouple psychrometer. The observations were made by this method on the Northwestern Pacific. The results indicate that this technique is usable for determining the distribution of fluxes over the ocean.  相似文献   

7.
The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest.Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( < 0.01 Hz).The simulations of REA showed significant change in b-factors throughout the diurnal course. The b-factor is part of the REA parameterisation scheme and describes a relation between the concentration difference and the vertical flux of a trace gas. The diurnal course of b-factors for carbon dioxide, sonic temperature and water vapour matched well. Relative flux errors induced in REA by varying scalar similarity were generally below ± 10%. Systematic underestimation of the flux of up to − 40% was found for the use of REA applying a hyperbolic deadband (HREA). This underestimation was related to poor scalar similarity between the scalar of interest and the scalar used as proxy for the deadband definition.  相似文献   

8.
Turbulence measurements in the lower half of the convective boundary layer (CBL), which includes both mixed layer and surface layer, were carried out with five sonic anemometers mounted on a 213-m tower over a complex flat suburban area with patches of forest, agricultural land, houses and buildings. Also made were radiosoundings of temperature, humidity and wind speed, to determine the CBL height. The sonic anemometer data of wind speed and temperature were processed to derive the second-moment turbulent statistics and were analyzed to investigate the applicability of variance methods to estimate regional surface fluxes of sensible heat. It was found that the temperature variances in the lower mixed layer, coupled with universal functions, produced sensible heat fluxes H over the area with an rms error of the order of 40 Wm-2 when compared with H values derived from the eddy correlation method. The variance of the vertical wind speed did not produce as good a result. In contrast, the surface-layer temperature variances yielded H values with rms error of the order of 20 Wm-2, even though the underlying surface was non-uniform and highly non-isothermal, above which enhanced temperature variances could be suspected.  相似文献   

9.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

10.
The Hilbert–Huang transform (HHT) is applied to analyzing the turbulent time series obtained within the atmospheric boundary layer over the ocean. A method based on the HHT is introduced to reduce the influence of non-turbulent motions on the eddy-covariance based flux by removing non-turbulent modes from the time series. The scale dependence of the flux is examined and a gap mode is identified to distinguish between turbulent modes and non-turbulent modes. To examine the effectiveness of this method it is compared with three conventional methods (block average, moving-window average, and multi-resolution decomposition). The data used are from three sonic anemometers installed on a moored buoy at about 6, 4 and 2.7 m height above the sea surface. For each method, along-wind and cross-wind momentum fluxes and sensible heat fluxes at the three heights are calculated. According to the assumption of a constant-flux layer, there should be no significant difference between the fluxes at the three heights. The results show that the fluxes calculated using HHT exhibit a smaller difference and higher correlation than the other methods. These results support the successful application of HHT to the estimation of air-sea turbulent fluxes.  相似文献   

11.
An experiment was conducted to study turbulent transport processes of scalar quantities within and above a rice plant canopy. A sonic anemometer-thermometer and a Lyman- humidiometer were used to measure the turbulent fluxes of sensible and latent heat and related turbulence statistics within a paddy field. The sensible and latent heat fluxes measured at two heights within and above the plant canopy showed that the upper layer of this plant canopy was an active source region and that the source strength of sensible and latent heat depended on the solar radiation and physiology of rice plants. Analysis of joint probability distributions of w and T and of w and q within this plant canopy showed that downdrafts were remarkably efficient for upward transport of sensible and latent heat in the daytime. The vertical fluxes of temperature and humidity variance were also divergent from the upper layer of plant canopies. The power spectra of temperature and humidity within the plant canopy decreased rapidly in the high frequency range, compared with the - 2/3 law relationship of nS(n) vs log n observed above plant canopies.  相似文献   

12.
The low-level flight method (LLF) has been combined with linear inverse models (IM) resulting in an LLF+IM method for the determination of area-averaged turbulent surface fluxes. With this combination, the vertical divergences of the turbulent latent and sensible heat fluxes were calculated from horizontal flights. The statistical errors of the derived turbulent surface fluxes were significantly reduced. The LLF+IM method was tested both in numerical and field experiments. Large-eddy simulations (LES) were performed to compare ‘true’ flux profiles with ‘measurements’ of simulated flights in an idealised convective boundary layer. Small differences between the ‘true’ and the ‘measured’ fluxes were found, but the vertical flux divergences were correctly calculated by the LLF+IM method. The LLF+IM method was then applied to data collected during two flights with the Helipod, a turbulence probe carried by a helicopter, and with the research aircraft Do 128 in the LITFASS-98 field campaign. The derived surface fluxes were compared with results from eddy-covariance surface stations and with large-aperture scintillometer data. The comparison showed that the LLF+IM method worked well for the sensible heat flux at 77 and 200 m flight levels, and also for the latent heat flux at the lowest level. The model quality control indicated failures for the latent heat flux at the 200 m level (and higher), which were probably due to large moisture fluctuations that could not be modelled using linear assumptions. Finally the LLF+IM method was applied to more than twenty low-level flights from the LITFASS-2003 experiment. Comparison with aggregated surface flux data revealed good agreement for the sensible heat flux but larger discrepancies and a higher statistical uncertainty for the latent heat flux  相似文献   

13.
Summary The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one low tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the high tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches –1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a phantom dew error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent SEC system 3 were in reasonable agreement, while the BREB system appeared to overestimate H and underestimate LE; H and LE measured by SEC system 22 on the high tower were lower than from OPEC and SEC3 on the low tower. The turbulent flux measurements tended to converge, but the data exhibit unexplained differences between days, between systems, and between locations.With 7 Figures  相似文献   

14.
Direct air-sea flux measurements were made on R/V Kexue #1 at 4 ° S, 156 ° E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-α hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme. There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results. Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heat flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.  相似文献   

15.
The frequency response of different types of sonic anemometers due to spatialaveraging of turbulent fluctuations along the sonic path is investigated byapplying modeling procedures and by sonic measurements. The data wereobtained simultaneously at up to 4 heights over extreme smooth andhomogeneous terrain during stationary situations, varying fromslightly stable to unstable. It is shown thatcorrections for the variance of the vertical wind component areneeded for measurements close to the ground. A correction procedure, based ona response function for the vertical wind and on parameters derived frompower spectra, is applied to the measurements. At a height of about onemetre, the variance of the vertical wind component is typicallyunderestimated by about 10%. The error decreases with increasing height. It isalso shown that in the height range down to one metre other turbulencequantities, as for example the variances of the horizontal wind components andthe turbulent fluxes of momentum and sensible heat, are not markedly affectedby the sonic spatial response. Experimental data support these findings.  相似文献   

16.
Kochendorfer et al. (Boundary-Layer Meterol, 145:383–398, 2012) conducted an experiment to evaluate azimuth and angle-of-attack dependent errors of sonic anemometer measurements. Several questions are raised regarding the experimental design and the presented results. The finding that instruments with non-orthogonal sonic paths underestimate fluctuations of vertical wind speed and consequently also scalar fluxes by about 10 % is compared with the results of a hitherto unpublished side-by-side field comparison and other past intercomparison experiments. Scale considerations are presented that raise considerable doubts on the validity of the implicit assumption of Kochendorfer et al. (2012) that the turbulent wind vector is highly correlated across a distance of 1.2 m at a height of 2.5 m over flat grassland, which corresponds to the separation between the sonic anemometers tested in their experiment. Nevertheless, new developments in sonic anemometer design to minimize transducer-shadow effects are desirable.  相似文献   

17.
Inversion fluxes of virtual heat were computed for seven clear days over the Pre-Alpine region in Switzerland with profile data from a sequence of radio soundings. Several entrainment models based on the turbulent kinetic energy equation were tested with the data. It was found that the relatively simple equation first proposed by Tennekes (1973) which contains both a convective and a mechanical term for the entrainment does as well as the more complicated parameterizations. In addition, the effect of water vapor on the magnitude of the buoyancy fluxes at the surface and at the inversion was observed to be important since the Bowen ratio normally ranged between 0.1 and 0.2.Now at the Hydrology Laboratory of the Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, U.S.A.  相似文献   

18.
The measurement of scalar fluxes employing the eddy covariance method is a widely used experimental approach,for which the flow distortion due to obstacles (e.g., sensor mounts and mast)is a well-known but not fully solved problem. In order to reduce flow distortion we installed a sonic anemometer in a surface-normal orientationrelative to the terrain slope, and a second instrument in a verticalposition at a horizontal distance of 1.54 m from the first instrumentWe found a significant reduction in the rotation angle necessary for the coordinaterotation procedure in the x-z plane whencomputing 30-minute flux averages with the surface-normal orientation. In 91% of all cases this rotation angleremained within the angle of incidence of ±10° recommended bythe manufacturer. In contrast, only 24% of the measurements taken with the vertically mounted anemometer were obtained at an angle of incidencewithin ±10°, and 3% were outside the ±30° range specified for an acceptable operation.A data quality test based on the variance of vertical windspeed normalized with friction velocity (w/u*) revealed problems for application under stable conditions due to large uncertainties in the determination of the Monin–Obukhov stability parameter z/L. An alternative test using the bulk drag coefficient CD revealed other problems related to the dependence of CD on z/z0, the measuring height normalized by the roughness length, which do not appear to be constantin complex terrain. With both tests, a tendency for a slightly improved dataquality was found for the surface normal set-up, which, however, proved statistically insignificant.It is concluded that the surface-normal set-up of a sonic anemometer significantly reduces flow distortion by thesensor head. Although the surface-normal mounting position therefore appears to be the preferred one, with decreased flow distortion and a slightly improved data quality, no significant differences in turbulent quantities were found between the two set-uppositions. Hence, the consequences for short-term measurements of massand energy fluxes with a surface-normal set-up in complex terrain appearto be relevant only if single flux events are to be inspected, while for long-term measurements of integrated fluxes both the surface-normaland vertical installation of the sonic anemometer are adequate,indicating that eddy covariance measurements in complex terrain are lessdelicate than expected.  相似文献   

19.
张烺  李跃清  李英 《大气科学》2010,34(4):703-714
目前利用涡旋相关仪观测地表通量的方法已被广泛采用, 但由于涡旋相关法是建立在方程假设简化的基础上, 这对观测数据的质量提出了一定的要求, 所以对观测数据的处理及通量结果的质量状况分析就显得尤为重要。本文以理塘站2006年7月中到8月中的数据为例, 对其进行质量控制, 并将质量控制后的通量计算结果与原始值进行比较。质量控制后感热通量和潜热通量总和有所增长, 动量通量值则受质量控制影响较大。质量评价的结果为:动量通量、感热通量、潜热通量中高质量数据所占比例为68.2%、60.6%、63.3%。  相似文献   

20.
Summary The Bowen ratio-energy balance (BREB) and the stability-corrected aerodynamic method were used to estimate turbulent fluxes of sensible and latent heat at an irrigated alfalfa site in a semi-arid valley in northern Utah, U.S.A., during August and September of 1991. Despite inclusion of a generalized stability factor, the aerodynamic method underestimated the daytime (sunrise-sunset) sensible and latent heat fluxes by approximately 30% in comparison with the BREB method. The sum of the aerodynamic estimates of sensible and latent heat seldom balanced the energy avaiable from net radiation and change in storage. Wind speed was low during the experiment (averaging 1.6 m s–1), and so a second analysis was run for data from daytime, non-rainy, turbulent conditions (wind > 1.5 m s–1). This showed that sensible and latent heat were still underestimated by approximately 30% in comparison with the BREB approach. This suggests that underestimation of sensible and latent heat fluxes by the aerodynamic method was not related to the wind speed conditions during the experiment. These results show that the stability-corrected aerodynamic model did not agree with the Bowen ratio method in this experiment. It appears unlikely that the discrepancies resulted from measurement errors. Perhaps the theoretical foundation of the similarity parameters (stability functions) in the aerodynamic model are not sufficiently generalized. The discrepancies found here confirm the necessity of calibration checks on the validity of aerodynamic estimates of the turbulent fluxes.With 7 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号