首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Sierra Nevada, the “Recess Peak Glaciation” has been previously defined on the basis of deposits exhibiting relative-age characteristics intermediate between those of the Little Ice Age deposits and those of early Holocene or older moraines. In the absence of reliable chronological control, the Recess Peak deposits were assigned an early Neoglacial age. Although numerous moraines in the central and southern Sierra have been attributed to this interval, regional snowline gradients reconstructed from these deposits lack internal consistency and appear to represent several distinctly different episodes of glacier advance. As a basis for comparison with the Recess Peak data, modern and late Pleistocene regional snowlines were reconstructed using accumulation-area ratios and cirque-floor altitudes. These reconstructions display regionally consistent gradients, rising gradually southward and more steeply eastward. Based on these data, the full-glacial late Pleistocene snowline depression is estimated to have been ≥800 m. Estimates of Recess Peak snowline depression vary widely, ranging from 140 to 500 m, and a reconstructed regional gradient rises northward, in opposition to the late Pleistocene and modern snowlines. Limited radiocarbon dating and the irregular pattern derived from the Recess Peak snowline data suggest that, even in the type area, these deposits resulted from both pre- and post-Hypsithermal glacier advances.  相似文献   

2.
Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000–34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5 °C below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.  相似文献   

3.
We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages (n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance.Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini had receded to just outboard of the outer Holocene moraines at Lago Frías and Lago Pearson (Anita) prior to 10,400 ± 40 14C yrs BP (12,270 ± 100 cal yrs BP) and 9040 ± 45 14C yrs BP (10,210 ± 50 cal yrs BP), respectively. The most extensive recession registered during the early Holocene was in Agassiz Este Valley, where the Upsala Glacier had pulled back behind the outer Holocene moraine, reaching close to the present-day glacier terminus before 8290 ± 40 14C yrs BP (9300 ± 80 cal yrs BP).The radiocarbon-dated fluctuations of the Lago Argentino glacier in late-glacial time, given here, are in accord with changes in ocean mixed layer properties, predominately temperature, derived from the isotopic record given here of ODP Core 1233, taken a short distance off shore of the Chilean Lake District. It also matches recently published chronologies of late-glacial moraines in the Southern Alps of New Zealand on the opposite side of the Pacific Ocean from Lago Argentino. Finally, the timing of the late-glacial reversal of the Lago Argentino glacier fits the most recent chronology for the culmination of the Antarctic Cold Reversal (ACR) in the deuterium record of the EPICA Dome C ice core from high on the East Antarctic Plateau. Therefore, we conclude that the climate signature of the ACR was widespread in both the ocean and the atmosphere over at least the southern quarter of the globe.  相似文献   

4.
Dortch, J. M., Owen, L. A., Caffee, M. W. & Brease, P. 2009: Late Quaternary glaciation and equilibrium line altitude variations of the McKinley River region, central Alaska Range. Boreas, 10.1111/j.1502‐3885.2009.00121.x. ISSN 0300‐9483 Glacial deposits and landforms produced by the Muldrow and Peters glaciers in the McKinley River region of Alaska were examined using geomorphic and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating (SED) methods to assess the timing and nature of late Quaternary glaciation and moraine stabilization. In addition to the oldest glacial deposits (McLeod Creek Drift), a group of four late Pleistocene moraines (MP‐I, II, III and IV) and three late Holocene till deposits (‘X’, ‘Y’ and ‘Z’ drifts) are present in the region, representing at least eight glacial advances. The 10Be TCN ages for the MP‐I moraine ranged from 2.5 kyr to 146 kyr, which highlights the problems of defining the ages of late Quaternary moraines using SED methods in central Alaska. The Muldrow ‘X’ drift has a 10Be TCN age of ~0.54 kyr, which is ~1.3 kyr younger than the independent minimum lichen age of ~1.8 kyr. This age difference probably represents the minimum time between formation and early stabilization of the moraine. Contemporary and former equilibrium line altitudes (ELAs) were determined. The ELA depressions for the Muldrow glacial system were 560, 400, 350 and 190 m and for the Peters glacial system 560, 360, 150 and 10 m, based on MP‐I through MP‐IV moraines, respectively. The difference between ELA depressions for the Muldrow and Peters glaciers likely reflects differences in supraglacial debris‐cover, glacier hypsometry and topographic controls on glacier mass balance.  相似文献   

5.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

6.
Palaeoenvironmental studies combining 14C dating, palaeobotanical and archaeological data provide information about the human reaction to Holocene environmental changes registered in the surroundings of Biržulis Lake in northwest Lithuania.Responding to water regression, early Mesolithic communities were established on the lower lake terraces, which were overgrown by predominantly birch and pine forest. The formation of a mixed forest with Ulmus (immigrated at 8100–7500 cal yr BC), Corylus (7600–7200 cal yr BC) and Alnus (7300–6900 cal yr BC) provided plenty of natural resources, which led to the increase in population during the late Mesolithic. The expansion of Tilia (6400–5900 cal yr BC) and Quercus (5900–5700 cal yr BC), as well as the subsequent flourishing of broad-leaved forest, provided inhabitants with suitable living conditions.The reduction of broad-leaved woodland and the expansion of Picea (4400–3700 cal yr BC), which suggest changing temperature and moisture conditions as well as increasing erosion activity, could have negatively influenced the early-middle Neolithic population, as evidenced by the partial abandoning of the land. The lowering of the water level and thinning of the forest structure possibly related to some dry episode, positively influenced late Neolithic groups, as intensive exploitation of the area, including the earliest attempts at agriculture, has been registered. Since 1770–1490 cal yr BC, when intensive bogging began, evidence of periodic inhabitation around the lake has been registered.  相似文献   

7.
Development of an accurate chronology for glacial deposits in the Sierra Nevada has long been problematic given the lack of suitable organic material for radiocarbon dating. Lichenometry initially appeared promising as ages showed an increase from cirque headwalls to down-canyon moraines. However, while Recess Peak lichen age estimates range from 2 to 3 ka, recent work shows these deposits to be at least 10 ka older. Here, we present evidence for a late Holocene reset of Recess Peak lichen ages by significant post-depositional climate change. Following late-Pleistocene deposition of Recess Peak moraines, warming through the mid-Holocene allowed forests to advance into shallow basins eliminating local inverted tree lines. This produced a partial canopy where shading killed the original post-Pleistocene crustose lichen colonies. Late-Holocene cooling resulted in forest retreat from these basins as alpine tree line fell. Lichens then recolonized the re-exposed Recess Peak deposits. We conclude that while Recess Peak lichen ages are accurate to within the dating uncertainty of the technique, existing lichen ages actually date the timing of post-mid-Holocene cooling and recolonization, and not the original emplacement of these deposits. Thus, applications of Lichenometry should consider post-depositional environmental change when interpreting the meaning of these dates.  相似文献   

8.
Late Quaternary moraines and diamictons containing striated clasts are described from near Elliot in the Drakensberg of South Africa. An equilibrium line altitude (ELA) of 2109 m is suggested for the palaeoglacier associated with the innermost moraine. This glacier was fed by a very extensive snowblow area and the ELA may reflect the temperature–precipitation–wind ELA rather than the temperature–precipitation ELA and be considerably below the ‘regional’ ELA. Mean annual air temperatures when glaciation occurred were probably at least 10.0°C below those of the present. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Geomorphic evidence of former glaciation in the high Drakensberg of southern Africa has proven controversial, with conflicting glacial and non‐glacial interpretations suggested for many landforms. This paper presents new geomorphological, sedimentological and micromorphological data, and glacier mass‐balance modelling for a site in the Leqooa Valley, eastern Lesotho, preserving what are considered to be moraines of a former niche glacier that existed during the Last Glacial Maximum (LGM). The geomorphology and macro‐sedimentology of the deposits display characteristics of both active and passive transport by glacial processes. However, micromorphological analyses indicate a more complex history of glacial deposition and subsequent reworking by mass movement processes. The application of a glacier reconstruction technique to determine whether this site could have supported a glacier indicates a reconstructed glacier equilibrium line altitude (ELA) of 3136 m a.s.l. and palaeoglacier mass balance characteristics comparable with modern analogues, reflecting viable, if marginal glaciation. Radiocarbon dates obtained from organic sediment within the moraines indicate that these are of LGM age. The reconstructed palaeoclimatic conditions during the LGM suggest that snow accumulation in the Drakensberg was significantly higher than considered by other studies, and has substantial relevance for tuning regional climate models for southern Africa during the last glacial cycle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   

11.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
《Quaternary Science Reviews》2007,26(3-4):479-493
Evidence from glacier forefields and lakes is used to reconstruct Holocene glacier fluctuations in the Spearhead and Fitzsimmons ranges in southwest British Columbia. Radiocarbon ages on detrital wood and trees killed by advancing ice and changes in sediment delivery to downstream proglacial lakes indicate that glaciers expanded from minimum extents in the early Holocene to their maximum extents about two to three centuries ago during the Little Ice Age. The data indicate that glaciers advanced 8630–8020, 6950–6750, 3580–2990, and probably 4530–4090 cal yr BP, and repeatedly during the past millennium. Little Ice Age moraines dated using dendrochronology and lichenometry date to early in the 18th century and in the 1830s and 1890s. Limitations inherent in lacustrine and terrestrial-based methods of documenting Holocene glacier fluctuations are minimized by using the two records together.  相似文献   

13.
Atle Nesje   《Quaternary Science Reviews》2009,28(21-22):2119-2136
During the early Holocene abrupt, decadal to centennial-scale climate variations caused significant glacier variations in Norway. Increased freshwater inflow to the North Atlantic and Arctic Oceans has been suggested as one of the most likely mechanisms to explain the abrupt and significant Lateglacial and early Holocene climatic events in NW Europe. The largest early Holocene glacier readvances occurred 11,200, 10,500, 10,100, 9700, 9200 and 8400–8000 cal. yr BP. The studied Norwegian glaciers apparently melted away at least once during the early/mid-Holocene. The period with the most contracted glaciers in Scandinavia was between 6600 and 6000 cal. yr BP. Subsequent to 6000 cal. yr BP the glaciers started to advance and the most extensive glaciers existed at about 5600, 4400, 3300, 2300, 1600 cal. yr BP, and during the ‘Little Ice Age’. Times with overall less glacier activity were apparently around 5000, 4000, 3000, 2000, and 1200 cal. yr BP. It has been proposed that several glacier advances occurred in Scandinavia (including northern Sweden) at 8500–7900, 7400–7200, 6300–6100, 5900–5800, 5600–5300, 5100–4800, 4600–4200, 3400–3200, 3000–2800, 2700–2000, 1900–1600, 1200–1000, and 700–200 cal. yr BP. Glaciers in northern Sweden probably reached their greatest ‘Little Ice Age’ extent between the 17th and the beginning of the 18th centuries. Evidence for early Holocene glacier advances in northern Scandinavia, however, has been questioned by more recent, multi-disciplinary studies. The early to mid-Holocene glacier episodes in northern Sweden may therefore be questioned.Most Norwegian glaciers attained their maximum ‘Little Ice Age’ extent during the mid-18th century. Cumulative glacier length variations in southern Norway, based on marginal moraines dated by lichenometry and historic evidence, show an overall retreat from the mid-18th century until the 1930s–40s. Subsequently, most Norwegian glaciers retreated significantly. Maritime outlet glaciers with short frontal time lags (<10–15 years) started to advance in the mid-1950s, whereas long outlet glaciers with longer frontal time lags (>15–20 years) continued their retreat to the 1970s and 1980s. However, maritime glaciers started to advance as a response to higher winter accumulation during the first part of the 1990s. After 2000 several of the observed glaciers have retreated remarkably fast (annual frontal retreat > 100 m) mainly due to high summer temperatures. The general glacier retreat during the early Holocene and the Neoglacial advances after 6000 cal. yr BP are in line with orbital forcing, due to the decrease of Northern Hemisphere summer solar insolation and the increase in winter insolation. In addition, regional weather modes, such as the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO), play a significant role with respect to decadal and multi-decadal climate variability.  相似文献   

14.
The upper Enchantment Lakes basin in the North Cascade Range of Washington displays two moraine belts, each recording an episode of glacier advance after the end of the last glaciation. The inner belt, the Brynhild, 0.1 to 0.5 km beyond existing glaciers, postdates Mount St. Helens Wn tephra (~450 yr old), which lies only beyond the moraines. The morainal surface is only slightly weathered, is almost barren of lichens, and is devoid of soil, evidence suggesting that the Brynhild moraines are no more than a century old. The outer moraine, the Brisingamen, 0.3 to 0.7 km beyond existing glaciers, is weathered and is covered with large lichens. On and behind the Brisingamen moraine the Mazama ash (6900 yr old) is present beneath the Mount St. Helens Yn and Wn tephras. Despite more than 7 millennia of weathering, the rock surface behind the Brisingamen moraine is measurably less weathered than the surface beyond, which was last glaciated during the Rat Creek advance about 13,000 yr ago. The age of the Brisingamen moraine therefore is probably early Holocene. The Brisingamen moraine evidently correlates with moraines near Glacier Peak, near Mount Rainier, in northeastern and central Oregon, in the southern Canadian Rockies, and in the northern U.S. Rocky Mountains. These regional effects suggest that a climatic episode of cooling or increased snowfall affected the entire region some time during the early Holocene.  相似文献   

15.
Field stratigraphy and optical and radiocarbon dating of lateral moraines in the monsoon dominated Dunagiri valley of the Central Himalaya provide evidence for three major glaciations during the last 12 ka. The oldest and most extensive glaciation, the Bangni Glacial Stage-I (BGS-I), is dated between 12 and 9 ka, followed by the BGS-II glaciation (7.5 and 4.5 ka) and the BGS-III glaciation (∼1 ka). In addition, discrete moraine mounds proximal to the present day glacier snout are attributed to the Little Ice Age (LIA). BGS-I started around the Younger Dryas (YD) cooling event and persisted till the early Holocene when the Indian Summer Monsoon (ISM) strengthened. The less extensive BGS-II glaciation, which occurred during the early to mid-Holocene, is ascribed to lower temperature and decreased precipitation. Further reduction in ice volume during BGS-III is attributed to a late Holocene warm and moist climate. Although the glaciers respond to a combination of temperature and precipitation changes, in the Dunagiri valley decreased temperature seems to be the major driver of glaciations during the Holocene.  相似文献   

16.
Chronology of cirque glaciation,Colorado front range   总被引:2,自引:0,他引:2  
Moraines and rock glaciers in Front Range cirques record at least four, and possibly five, intervals of Holocene glacier expansion. The earliest and most extensive was the Satanta Peak advance, which deposited multiple terminal moraines near present timberline shortly before 9915 ± 165 BP. By 9200 ± 135 BP, timberline had risen to at least its modern elevation; by 8460 ± 140 BP, patterned ground on Satanta Peak moraines had become inactive. Although a minor ice advance may have occurred just prior to 7900 ± 130 BP, there is no evidence that glaciers or perennial snowbanks survived in the Front Range during the “Altithermal” maximum (ca. 6000–7500 BP), or during a subsequent interval of alpine soil formation (ca. 5000–6000 BP).Glaciers were larger during the Triple Lakes advance (3000–5000 BP) than at any other time during Neoglaciation. Minimum ages of 4485 ± 100 BP, 3865 ± 100 BP, and ca. 3150 BP apply to a threefold sequence of Triple Lakes deposits in Arapaho Cirque. After an important interval of soil formation and cavernous weathering, glaciers and rock glaciers of the Audubon advance (950–1850 BP) reoccupied many cirques, and perennial snowbanks blanketed much of the area above present timberline; although the general Audubon snow cover had begun to melt from valley floors by 1505 ± 95 BP, expanded snowbanks lingered on tundra ridge crests until 1050–1150 BP, and glaciers persisted is sheltered cirques until at least 955 ± 95 BP. Following a minor interval of ice retreat, glaciers of the Arapaho Peak advance (100–300 BP) deposited multiple moraines in favorably oriented cirques.Interpretation of Holocene glacial deposits in the Southern and Central Rocky Mountains has been hampered by (1) a heavy reliance upon relative-dating criteria, many of which are influenced by factors other than age; (2) the assumption that glacial advances in high-altitude cirques can be correlated directly with alluvial deposition in far-distant lowlands; and (3) the assumption that glacial advances have necessarily been synchronous throughout the Rocky Mountain region and the world. Although Holocene glacier fluctuations in the Front Range are believed to reflect changes in regional climate, the Front Range chronology does not have particularly close analogs in other parts of North America. Better-dated local sequences are needed before the hypothesis of global synchroneity can be adequately evaluated; until synchroneity has been proven, long-distance correlations and worldwide cycles of recurring glaciation will remain unconvincing.  相似文献   

17.
Detailed 10Be and 14C dating and supporting pollen analysis of Alpine Lateglacial glacial and landslide deposits in the Hohen Tauern Mountains (Austria) constrain a sequence‐based stratigraphy comprising a major landslide (13.0±1.1 ka) overlain by till and termino‐lateral moraines of an advancing (12.6±1.0 ka) and retreating (11.3±0.8 ka) glacier in turn overlain by a minor landslide (10.8±1.1 ka). These results define glacier activity during the Younger Dryas age Egesen stadial bracketed by landslide activities during the Bølling‐Allerød interstadial and the Preboreal. In contrast to recent studies on Holocene glaciation in the Alps, no traces of any Holocene glacier advance bigger than during the Little Ice Age are documented. Furthermore, this study demonstrates the advantages of using an allostratigraphical approach based on unconformity‐bounded sedimentary units as a tool for glacial stratigraphy in formerly glaciated mountain regions, rather than a stratigraphy based on either isolated morphological features or lithostratigraphical characteristics.  相似文献   

18.
Glacial landforms and sediments mapped in three presently unglaciated mountain massifs, the Nanhuta Shan, the Hsueh Shan and the Yushan, support the concept of repeated, multi-stage glaciations in the Taiwanese high mountain range during the late Pleistocene. New results from surface exposure dating using in situ produced cosmogenic 10Be measured in samples taken from erratic and moraine boulders in Nanhuta Shan at altitudes between 3100 and 3500 m are presented here. The results confirm independent and previously reported Optically Stimulated Luminescence (OSL) ages and 10Be exposure ages from glacial deposits in the same area and suggest a Lateglacial and early Holocene glaciation, the so called Nanhuta glacier advance with two substages at about 12–15 ka and 9.5 ka BP. The respective equilibrium line altitudes (ELA) were calculated at 3340 m and 3440 m with corresponding ELA depressions of 610 ± 100 m and 510 ± 100 m relative to the present day (theoretical) ELA, which is estimated to be at about 3950 ± 100 m in Taiwan. Large-scale erosional landforms indicate a much wider glacier extent during an earlier stage, which is not dated in Nanhuta Shan so far. Luminescence dating from near Hsueh Shan suggests an age of marine isotope stage (MIS) 4 for this stage.  相似文献   

19.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

20.
Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号