首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于GIS的主要农作物病虫害气象等级预报系统研究   总被引:2,自引:0,他引:2  
为了将农作物病虫害气象等级预报能力扩展到更大空间尺度,根据相邻和相近农作物种植区域的一致性,进行农作物病虫害预报模型区域化应用和拓展。建立了气象等级划分标准,在Oracle农业气象数据库和地理空间数据库的支持下,采用Visual Basic.NET和GIS组件,设计并实现了基于地理空间信息的主要农作物病虫害气象等级预报系统。该系统可对北方草原蝗虫、东北玉米螟、江南稻飞虱、黄淮棉铃虫、黄淮小麦条锈病、江淮江汉小麦赤霉病和西南地区水稻稻瘟病7大类主要作物病虫害发生发展气象等级进行实时预报,取得了较好效果。  相似文献   

2.
Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002–2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.  相似文献   

3.
Crop yield is mainly dependent on weather, soil and technological inputs. Yield forecasting models have been developed mainly using multiple regression techniques based on biometrical characters of the plants and/or weather parameters. Matiset al. (1985) proposed another approach of crop yield modelling using Markov Chain theory based on biometrical characters. The integration of remote sensing with other technologies has provided an immense scope to improve upon the existing crop yield models. In the present study, multi date spectral data during crop growth period was used in Markov Chain Model to forecast wheat yield. The results indicate that the use of spectral data near the maximum vegetative growth of wheat crop improves the efficiency and reliability of yield forecast about a month before its actual harvest.  相似文献   

4.
Monitoring of Agricultural crops using remote sensing data is an emerging tool in recent years. Spatial determination of sowing date is an important input of any crop model. Geostationary satellite has the capability to provide data at high temporal interval to monitor vegetation throughout the entire growth period. A study was conducted to estimate the sowing date of wheat crop in major wheat growing states viz. Punjab, Haryana, Uttar Pradesh (UP), Madhya Pradesh (MP), Rajasthan and Bihar. Data acquired by Charged Couple Detector (CCD) onboard Indian geostationary satellite INSAT 3A have continental (Asia) coverage at 1 km?×?1 km spatial resolution in optical spectral bands with high temporal frequency. Daily operational Normalized Difference Vegetation Index (NDVI) product from INSAT 3A CCD available through Meteorological and Oceanographic Satellite Data Archival Centre (MOSDAC) was used to estimate sowing date of wheat crop in selected six states. Daily NDVI data acquired from September 1, 2010 to December 31, 2010 were used in this study. A composite of 7 days was prepared for further analysis of temporal profile of NDVI. Spatial wheat crop map derived from AWiFS (56 m) were re-sampled at INSAT 3A CCD parent resolution and applied over each 7 day composite. The characteristic temporal profiles of 7 day NDVI composite was used to determine sowing date. NDVI profile showed decreasing trend during maturity of kharif crop, minimum value after harvest and increasing trend after emergence of wheat crop. A mathematical model was made to capture the persistent positive slope of NDVI profile after an inflection point. The change in behavior of NDVI profile was detected on the basis of change in NDVI threshold of 0.3 and sowing date was estimated for wheat crop in six states. Seven days has been deducted after it reached to threshold value with persistent positive slope to get sowing date. The clear distinction between early sowing and late sowing regions was observed in study area. Variation of sowing date was observed ranging from November 1 to December 20. The estimated sowing date was validated with the reported sowing date for the known wheat crop regions. The RMSD of 3.2 (n?=?45) has been observed for wheat sowing date. This methodology can also be applied over different crops with the availability of crop maps.  相似文献   

5.
Remote sensing technology becomes an effective and inexpensive technique for detecting disease in vegetation. In this study, an attempt has been done to discriminate healthy and late blight affected crop using remote sensing based indices such as NDVI and LSWI. NDVI and LSWI spectral profiles between healthy and late blight affected crop shows large difference. Mean difference in reflectance between two acquired dates Jan. 10 and 29, 2009 crop clusters varied from 31.28 % in red band, 7.7 % in NIR band and 6.23 % in SWIR bands in healthy crops while in late blight affected crops it is ?15.5 % in red, 44.4 % in NIR and ?14.61 % in SWIR bands. Negative percentage differences in reflectance indicate reflectance increases from Jan. 10, 2009 to Jan. 29, 2009, while positive difference indicate decrease in reflectance between the two dates. Since potato is an irrigated crop, these differences in reflectance are attributed to prevalent disease at that time. It is found that severely affected areas are Bardhman, Arambag, Bishnupur, Ghatal and Hugli taluka with crop damage areas are 4036.66, 1138.68, 2025.23, 469.15, and 380.08 ha, respectively.  相似文献   

6.
Desert locusts (DL) are serious problem during April to August in the deserts and semi-deserts of Republic of Kazakhstan and causing extensive crop damage. There is no institutional and functional mechanism to forecast the habitat of locusts and most of the area remains unnoticed after laying eggs. The key to improve DL forecasting and control depends on the collection and generation of historical database on locusts, weather and habitat from affected region. Looking at the problem, a Spatial Decision Support Systems (DSS) has been developed on ARC/INFO GIS with ergonomic user interface for ingestion and subsequent analysis of locust related information vis-à-vis bio-physical and climatic data acquired from various satellite sensors and hydromet weather server respectively, to identify high frequency breeding areas well before the physiological development is completed. Weather based analytical models for physiological development of DL has been dovetailed with the SDSS for facilitating historic and present data analysis in relation to locust activity. This has augmented the surveying capability and better forecasting.  相似文献   

7.
This paper evaluates the potential of using cartograms for visualizing and interpreting forecasts of weather-driven natural hazards in the context of global weather forecasting and early warning systems. The use of cartograms is intended to supplement traditional cartographic representations of the hazards in order to highlight the severity of an upcoming event. Cartogrammetric transformations are applied to forecasts of floods, heatwaves, windstorms and snowstorms taken from the European Centre for Medium-range Weather Forecasts (ECMWF) forecast archive. Key cartogram design principles in standard weather forecast visualization are tested. Optimal cartogram transformation is found to be dependent on geographical features (such as coastlines) and forecast features (such as snowstorm intensity). For highly spatially autocorrelated weather variables used in analysing several upcoming natural hazards such as 2m temperature anomaly, the visualization of the distortion provides a promising addition to standard forecast visualizations for highlighting upcoming weather-driven natural hazards.  相似文献   

8.
Penman–Monteith method adapted to satellite data was used for the estimation of wheat crop evapotranspiration during the entire growth period using satellite data together with ground meteorological measurements. The IRS-1D/IRS-P6 LISS-III sensor data at 23.5 m spatial resolution for path 096 and row 059 covering the study area were used to derive, albedo, normalized difference vegetation index, leaf area index and crop height and then to estimate wheat crop evapotranspiration referred to as actual evapotranspiration (ETact). The ETact varied from 0.86 to 3.41 mm/day during the crop growth period. These values are on an average 16.40 % lower than wheat crop potential evapotranspiration (ETc) estimated as product of reference crop evapotranspiration estimated by Penman–Monteith method and lysimetric crop coefficient (Kc). The deviation of ETact from ETc is significant, when both the values were compared with t test for paired two sample means. Though the observations on ETact were taken from well maintained unstressed experimental plot of 120 × 120 m size, there was significant deviation. This deviation could be attributed to, the satellite images representing the actual crop evapotranspiration as function crop canopy biophysical parameters, condition of the crop stand, climatic and soil conditions and the microclimate variation over area of one hectare. However, Penman–Monteith method represents a flat rate of specific growth stage of the crop.  相似文献   

9.
Developing countries are vulnerable to tropical cyclones due to climatic variability and the frequency and magnitude of some extreme weather and disaster events is likely to increase. Cities and towns situated along the coastal belt of Visakhapatnam district experienced severe damage because of Hudhub cyclone (12 October 2014). The main objective of this research was to identify and quantify the damage to agriculture and vegetation caused by Hudhud cyclone. In this study, landsat-8 satellite data-sets acquired before and after the cyclone have been used; image processing techniques have been carried out to assess the changes of pre- and post-cyclone condition. Economic loss of agriculture crops has been assessed using crop production loss per hectare and total economic loss for agriculture crops in the study area was calculated. Classification results and land use land cover change analysis show that 13.25% of agriculture-Kharif and 31.1% of vegetation was damaged. Crop Biomass was estimated with aid of crop conversion factor for pre- and post-cyclone conditions. Total ‘Above ground biomass’ of the agriculture crop area was estimated at 31.57 t/ha and total loss of biomass was assessed to be 4.2 t/ha. Carbon stock was found to be varying from 0.3 to 8.3 t.C/ha in specific agriculture crops. From the results, it was concluded that Hudhud has done significant damage to the rural and urban areas of Visakhapatnam. The outcome of this study can be used by decision-makers for the release of post disaster relief fund to affected areas.  相似文献   

10.
Availability of reliable, timely and accurate rainfall data is constraining the establishment of flood forecasting and early warning systems in many parts of Africa. We evaluated the potential of satellite and weather forecast data as input to a parsimonious flood forecasting model to provide information for flood early warning in the central part of Nigeria. We calibrated the HEC-HMS rainfall-runoff model using rainfall data from post real time Tropical Rainfall Measuring Mission (TRMM) Multi satellite Precipitation Analysis product (TMPA). Real time TMPA satellite rainfall estimates and European Centre for Medium-Range Weather Forecasts (ECMWF) rainfall products were tested for flood forecasting. The implication of removing the systematic errors of the satellite rainfall estimates (SREs) was explored. Performance of the rainfall-runoff model was assessed using visual inspection of simulated and observed hydrographs and a set of performance indicators. The forecast skill was assessed for 1–6 days lead time using categorical verification statistics such as Probability Of Detection (POD), Frequency Of Hit (FOH) and Frequency Of Miss (FOM). The model performance satisfactorily reproduced the pattern and volume of the observed stream flow hydrograph of Benue River. Overall, our results show that SREs and rainfall forecasts from weather models have great potential to serve as model inputs for real-time flood forecasting in data scarce areas. For these data to receive application in African transboundary basins, we suggest (i) removing their systematic error to further improve flood forecast skill; (ii) improving rainfall forecasts; and (iii) improving data sharing between riparian countries.  相似文献   

11.
Field experiment was conducted during 2009–10 and 2010–11 rabi season at research farm of IARI, New Delhi for assessing the aphid infestation in mustard. In aphid infested plant the LAI was 67 to 94% lower than healthy plant. Chlorophyll concentration decreased to 50% in infested plant as compared to healthy plant. Infestation was more severe in late sown crop and due to aphid infestation the percentage oil content and yield was reduced significantly. The spectral reflectance of aphid infested canopy and healthy canopy taken in the laboratory had significant difference in NIR region. In the visible region, the reflectance peak occurred in healthy canopy at around 550–560 nm while this peak was lower by 31% in the aphid infested canopy. The reflectance for healthy crop was found to be more in visible as well as NIR region as compared to aphid infested canopy. The most significant spectral bands for the aphid infestation in mustard are in visible (550–560 nm) and near infrared regions (700–1250 nm and 1950–2450 nm). The different level of aphid infestation can be identified in 1950–2450 nm spectral regions. Spectral indices viz NDVI, RVI, AI and SIPI had significant correlation with aphid infestation. Hence these indices could be used for identifying aphid infestation in mustard.  相似文献   

12.
Bhaga Basin has complex mountainous terrain; little study has been done on the spatial and temporal characteristics of snow cover in the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day snow cover products between 2001 and 2012 for winter period (November–April) have been used to study the variation in snow cover area (SCA). The statistical analysis based on non-parametric Mann Kendall and Sen’s slope methods have been used for detecting and estimating trends for climatic variables (temperature and snowfall) and SCA for winter period. Results of statistical analysis indicate rise in minimum temperature (0.02 °C year?1) and fall in maximum temperature (0.17 °C year?1). It also shows decrease in mean seasonal snowfall (0.07 cm year?1). The seasonal SCA was found to decrease at the rate of 0.002% year?1. This study indicates that the climate change is probably one of the major causes for depleting SCA.  相似文献   

13.
Alteration in climatic pattern has resulted to a steady decline in quality of life and the environment, especially in and around urbanized areas. These areas are faced with increasing surface temperature arising mostly from human activities and other natural sources; hence land surface temperature has become an important variable in global climate change studies. In this paper, Landsat TM/ETM imagery acquired between 1997 and 2013 were used to extract ground brightness temperature and land use/land cover change in Kuala Lumpur metropolis. The main objective of this paper is to examine the effectiveness of quantifying UHI effects, in space and time, using remote sensing data and, also, to find the relationship between UHI and land use change. Four land use types (forest, farmland, built-up area and water) were classified from the Landsat images using maximum likelihood classification technique. The result reveals that Greater KL experienced an increase in average temperature from 312.641°K to 321.112°K which was quite eminent with an average gain in surface temperature of 8.4717°K. During the period of investigation (1997–2013), generally high temperature is been experienced mostly in concentrated built-up areas, the less concentrated have a moderate to intermediate temperature. Again, the study also shows that low and intermediate temperature classes loss more spatial extent from 2,246.89 Km2 to 1,164.53 Km2 and 6,102.42 Km2 to 3,013.63 Km2 and a gain of 4,165.963 Km2 and 307.098 Km2 in moderate and high temperature respectively from 1997 to 2013. The results of this study may assist planners, scientists, engineers, demographers and other social scientists concerned about urban heat island to make decisions that will enhance sustainable environmental practices.  相似文献   

14.
Studies on urban heat islands using envisat AATSR data   总被引:1,自引:0,他引:1  
Urbanization has significant effects on local weather and climate and among these effects one of the most familiar is the urban heat island, for which the temperatures of the central urban locations are several degrees higher than those of nearby rural areas of similar elevation. Satellite data provides important inputs for estimating regional surface albedo and evapotranspiration required in the studies related to surface energy balance. Present study describes the analysis of day and night ENVISAT-AATSR satellite data for Urban heat island and surface thermal inertia. Field campaigns have been conducted in synchronous with the satellite data over pass for validating the surface temperature estimated from AATSR data. Satellite derived surface temperature values are within ±1° C from ground measured values. Heat island formations in urban regions of Hyderabad and environs can be clearly seen in the night time data with core urban regions showing high temperatures. Apparent thermal inertia derived from AATSR day and night data sets have shown typical variations over urban regions.  相似文献   

15.
The present study demonstrated the methodology to assess agro-climatic suitability of the soybean crop through integration of crop suitability based on FAO framework of land evaluation and biophysical (water limited) yield potential in the rainfed agro-ecosystem. A long term climatic database (1980–2003) was prepared to compute decadal rainfall and temperature variations of 13 IMD stations in part of Madhya Pradesh state. The climatic database was used in soil water balance software–BUDGET to compute crop specific length of growing period (LGP) and biophysical production potential such as water limited crop yield potential of each soil types for soybean crop. Water limited crop yield potential of soils were found to be varied from 33 to 100 and LGP ranged from 65 to 180 days in the area. FAO based land suitability was analyzed in association with the water limited yield potential for better appraisal of land potential and assess their suitability in rainfed area. FAO based land suitability indicated 2.45 % area as highly suitable and 57.49 % area as moderately suitable. However, integration of water limited crop yield potential with FAO based land suitability lead to agro-climatic suitability analysis indicated 17.60 % and 40.03 % area, respectively as highly suitable and moderately suitable. FAO based land evaluation showed 88.13 % of plains as moderately suitable whereas agro-climatic suitability indicated only 47.79 %. Agro-climatic suitability analysis revealed undulating plateau and undulating plains as most suitable for soybean crop.  相似文献   

16.
天气预报节目是服务行业最广,人数最多的节目之一。但目前的天气预报节目形式单一,数据图表、词汇枯燥呆板,专业术语过多。本文把虚拟现实技术应用于天气预报节目中,把枯燥的数据转化成逼真的场景。天气预报的三维场景生成与实时显示是构成天气预报该系统的重要部分,包括几何形体建模、纹理映射以及视觉效果处理等内容。系统利用MultiGenCreator进行建模和系统设计,基于Vega仿真软件环境开发了天气预报中的各种复杂场景特效;利用VisualC++实现了视景仿真程序。仿真结果表明,该系统较好地满足了视景仿真实时性和逼真度的要求。  相似文献   

17.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   

18.
掩星信号在传播过程中能够在地球表面发生反射,其反射信号中的低层大气信息在改进天气预报精准度和气候监测等方面存在很大的应用价值.基于COSMIC(constellation observing system for meteorology,ionosphere and climate)掩星廓线资料,提取了 2011-20...  相似文献   

19.
The North China Plain (NCP) was selected as the study area and the effects of water and heat were analysed to determine the dominant factor affecting winter wheat growth. The mean, minimum and maximum temperatures, precipitation and soil moisture data were selected to analyse the correlations between the leaf area index (the growth indicator) and these factors using long time series half-monthly data (2–5 months) (from 1982 to 2010). The results showed that temperature was the main factor affecting the growth of winter wheat in the NCP. The growth of winter wheat had weak correlations with precipitation and soil moisture and the influence of water on winter wheat growth was smaller than the influence of heat. In the northern part of the NCP, mainly including the north-west region of Shandong Province and the southern region of Hebei Province, irrigation was necessary in late February and early March.  相似文献   

20.
The dynamics of crop-fallow rotation cycles of shifting cultivation has been poorly understood in northeastern part of the country although it is one of the major land use systems in the hilly states of this region. The present study was conducted to understand the dynamics of shifting cultivation through the use of Landsat time-series data from 1999 to 2016 in Champhai district of Mizoram. We mapped the current jhum fields and abandoned areas of each imagery of the study period and performed a post classification comparison to assess the crop-fallow rotation cycle/jhum cycle. The chrono-sequential change of slash and burn area over the past 17 years showed a decreasing trend with the greater part of the shifting cultivation area being occupied by 2nd year crop fields, covering 48.81% of total jhum land. On average, 114.46 km2 area were annually slashed for current jhum, out of which 33.41% continued with current jhum 2nd year cropping and only 3.27% of jhumias continued with 3rd year cropping. The shifting cultivation patches were mostly confined to moderately steep slopes (15°–30°). East facing aspect was mostly preferred and North facing aspect was least preferred. During the study period, 10 years jhum cycle covered the maximum area followed by 9 years and 11 years jhum cycle. The end result of this study proved that the prevalent jhum cycle in Champhai district is 8–11 years with a fallow period of 6–9 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号