首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
单新建  柳稼航  马超 《地震学报》2004,26(5):474-480
利用差分干涉雷达测量技术获取的宏观震中区的同震形变场,结合对地震活动性、震源机制、野外考察等资料分析,对昆仑山口西8.1级地震同震形变场特征进行了研究. 结果表明:宏观震中位于库赛湖东北侧,宏观震中区发震断层可分为两个形变中心区域,其中西段长约42 km,东段长约48 km,整个发震断层主破裂段长90 km;由干涉形变条纹分布格局可清楚地判断出发震断层的左旋走滑特征;断层两盘变形特征不同,南盘变形程度明显大于北盘;宏观震中附近最大斜距向位移量为288.4 cm,最小斜距向位移量为224.0 cm,宏观震中发震断层最大左旋水平位错为738.1 cm,最小地面左旋水平位错为551.8 cm.   相似文献   

2.
星载D-INSAR技术及初步应用——以西藏玛尼地震为例   总被引:7,自引:0,他引:7       下载免费PDF全文
单新建  马瑾  柳稼航  王长林  宋晓宇 《地震地质》2001,23(3):439-446,T004
近 10a来 ,干涉合成孔径雷达 (INSAR ,InterferometricSyntheticApertureRadar;简称 :干涉雷达 )测量技术取得了令世人瞩目的成绩 ,已成为极具有潜力的空间对地观测新技术。较详细地介绍了干涉合成孔径雷达、差分干涉合成孔径雷达 (D -INSAR ,DifferentialINSAR ;简称 :差分干涉雷达 )技术的基本原理 ,并以 1997年 11月 8日西藏玛尼地震为例 ,通过三通差分干涉处理 ,获取了玛尼地震前后的地表变形场。通过分析可知 ,变形梯度带与发震断层平行 ,均沿NEE -SWW(2 5 0°)分布 ,断层水平错距近 5m ,最大隆起斜距向位移量为 98cm ,最大沉降斜距向位移量为 95cm  相似文献   

3.
采用欧洲空间局ERS-2的星载干涉雷达数据,选取1997年11月8日MW7.6级玛尼地震作为研究对象,采用了差分干涉方法,在通过对覆盖同一地区的SAR数据进行差分干涉处理,得到了玛尼地震的视线向同震形变场。经研究发现:该地震形变场呈长轴近北东东向不规则椭圆形分布,地表破裂带长度约为130km,发震断层走向约为78°,断裂为左行走滑特征。断层以南为隆起区,在发震断层附近最大视线向隆起位移量为113.6cm,断层以北为沉降区,最大视线向沉降位移量为170.4cm。基于Okada模型实现了具有复杂结构的4段断层段参数的InSAR形变场数据模拟,获得断层的最大走滑为6m,估计出玛尼地震的标量地震矩M0为2.69×10^20Nm,计算得到的矩震级MW为7.6。证明了研究方法的正确性和研究结论的可靠性。  相似文献   

4.
以1997年11月8日西藏玛尼地震为例, 通过三通差分干涉处理, 获取了玛尼地震同震位移场. 并在此基础上, 采用弹性半空间介质中的位错模型, 正演了玛尼地震发震断层某些几何学和运动学性质. 结果表明: (1) 发震断层两侧的变形场在垂向距断层110 km的区域仍受同震形变场影响. 地表破裂带所造成的非相干性条带贯穿整个图像, 长约110 km. (2) 发震断层最大水平位错达7.96 m. (3) 发震断层可分为4段. 其中中间两段所产生的变形场较大, 长度分别为27和37 km, 平均滑动值分别为6500和6000 mm, 深度均为35 km, 前者是玛尼地震的主破裂面. 西段和东段规模较小, 长度分别为23和26 km, 前者滑动量为4000 mm, 后者为5800 mm, 两者深度分别为20和18 km.  相似文献   

5.
利用D-InSAR技术研究西藏改则地震同震形变场   总被引:2,自引:1,他引:1       下载免费PDF全文
针对2008年1月9日MW6.4西藏改则地震和2008年1月16日的MW5.9余震,通过两通(2-pass)加外部DEM差分干涉处理技术(D-InSAR),提取了地震区域2次地震累积的视线向(LOS)同震形变场。结果表明:发震断层均为正断层,位于依布茶卡-日干配错断裂端点附近。主震发震断层走向为N30°E,余震发震断层走向为N21°E,两断层距离约7km;在影像上主震发震断层有造成地表破裂的痕迹,余震未见地表破裂的痕迹;这次地震造成的同震形变场长约30km,宽约20km,主震断层上盘和下盘视线向最大形变量分别为39.2cm和11.2cm,两盘相对位错达50.4cm,余震造成的视线向形变量为9.4cm  相似文献   

6.
D-InSAR技术应用于汶川地震地表位移场的空间分析   总被引:3,自引:1,他引:2       下载免费PDF全文
基于星载合成孔径雷达差分干涉测量技术(D-InSAR),利用7个条带共112景日本ALOS/PALSAR raw格式雷达数据,采用两通差分干涉处理模式,获取了2008年5月12日汶川MS8.0地震发震断层周围约450km×500km区域的同震形变干涉纹图。通过对干涉纹图的定性分析,确定了非相干带的分布范围,据此对相位连续条带和相位不连续条带采用不同的相位解缠方案,实现了7个条带的成功解缠,获得了数值化的干涉形变场图像,并通过形变等值线和跨断层形变剖面线等方法对干涉形变场的空间分布和演化特征进行了分析。结果表明:汶川地震造成的地表形变场沿映秀-北川断裂带分布,形变范围很大,但主要集中在发震断层南北两侧各约100km的近场区。其中断层附近由西向东宽约3015km,长约250km的区域为非相干带,是本次地震中变形最强烈并伴有地表破裂发生的区域,其形变梯度已超出InSAR测度能力。在非相干带两侧宽度各约70km,具有清晰可辨连续完整并向发震断层收敛的包络状干涉条纹区域是次一级形变区,距离发震断层越近,形变梯度和幅度越大,其视线向位移为北盘沉降,南盘抬升。相对于数据条带南北边缘,北盘最大累积沉  相似文献   

7.
2016年11月25日新疆克孜勒苏州阿克陶县发生MW6.6地震。 本文利用合成孔径雷达差分干涉测量技术, 对Sentinel-1卫星获取的升、 降轨雷达数据进行了处理, 提取了该次地震的同震形变场, 并结合形变场特征与震源机制解, 采用梯度下降法反演发震断层的滑动分布。 结果表明, 升、 降轨LOS向同震形变场在发震断层两侧具有明显不同的形变特征, 主要形变区域分布在断层两侧, 升轨LOS向形变量可达-8.2 cm与11.2 cm, 降轨LOS向形变量可达-21.4 cm与13.1 cm; 反演的升、 降轨干涉形变场与InSAR测量值之间的残差得到有效控制, 大部分的残差介于±5 cm之间; 断层滑动分布主要集中于沿断层面深约2~18 km处, 最大滑动量位于沿断层面深约7 km处可达0.96 m; 平均滑动角约182.29°, 最大滑动处的滑动角约197.13°, 两个滑动分布中心的滑动角均接近180°, 表明阿克陶地震为一典型的右旋走滑破裂性事件; 当剪切模量取32 Gpa时, 反演的发震断层地震矩M0可达9.75×1018, 相当于矩震级MW6.60, 与地震波形反演结果一致。  相似文献   

8.
基于星载合成孔径雷达差分干涉测量技术(DInSAR)和4期ENVISAT/ASAR雷达数据,获得了不同时间基线的三个同震干涉形变场和两个震后干涉形变场,并对这五个在时段上互有重叠的形变场进行了综合分析.结果表明,玉树地震同震形变场为围绕发震断层NW展布的椭圆形干涉条纹,覆盖范围约89 km×59 km.断层运动性质为左旋走滑.两盘最大视线向相对形变量至少达45 cm,最大形变出现在结古镇附近.时间基线不同的同震形变场总体上基本一致,但两盘最大相对形变量和局部形变存在差异.震后时间较长的干涉对反映的最大形变量反而减小;在震后时间较短的干涉对上于结古镇西南侧观测到的局部形变,在震后时间较长的干涉对上却没有出现.分析认为在形变量最大的结古镇附近可能出现了震后快速弹性回弹,导致随震后时间延续,形变量反而减小的现象.玉树地震震后形变主要出现在断层附近、震后不久的时段内,形变量在8 cm以下,具有与同震方向一致和相反的两种震后形变方式.在结古镇西南观测到一个与同震形变相反的局部沉降,应为震后弹性回弹.在微观震中处的断层附近观测到与同震方向一致的震后形变,可能是震后余滑.通过对地震前后不同时间基线的多个干涉对的联合对比分析,可以在一定程度上区分同震形变与震后形变,更好地研究地震引起的变形过程,特别是地震断层附近短期震后形变场的演化过程,为进一步研究断层带的岩性特征、物理力学及运动特性提供约束.  相似文献   

9.
孙凯  孟国杰  洪顺英  黄星  董彦芳 《地震》2020,40(3):15-27
利用大地测量数据研究2019年6月17日四川长宁MS6.0地震同震形变场特征和发震断层参数, 基于DInSAR技术处理升降轨Sentinel-1A数据获取干涉相位图, 并考虑大气折射效应和余震形变误差实现同震形变场改正。四叉树采样后的形变数据作为反演数据源, 采用弹性半空间分层模型反演发震断层几何面滑动分布。结果表明本次地震发震机制为兼具逆冲和左旋走滑, 矩震级为MW5.9, 断层破裂尺度达28 km×20 km, 震源深度约9.4 km。升降轨视线向同震形变场在断层两侧呈现形变特征差异, 最大沉降量分别是8.34 cm(升轨)和4.23 cm(降轨), 最大抬升量分别是5.5 cm(升轨)和7.5 cm(降轨); 发震断层走向为302°, 倾角为43°, 平均滑动角为50°, 断层面最大滑动量达到0.28 m。  相似文献   

10.
陈树  董彦芳  洪顺英  刘泰 《地震》2018,38(3):81-91
本文针对2016年11月25日在新疆阿克陶发生的地震, 用差分干涉测量技术(D-InSAR)对3种不同观测模式的升、 降轨数据进行处理, 提取了多视线向的同震形变场; 根据不同模式的LOS向形变量, 构建形变分解模型, 将其分解为垂直向形变量和沿断层走向形变量; 结合同震形变场特征与震源机制解, 采用单断层模型, 利用梯度下降法(SDM), 以Multi-LOS向形变进行约束, 反演了阿克陶地震的同震滑动分布特征。 研究结果表明, 升、 降轨LOS向同震形变场在发震断层两侧具有不同的形变特征, 发震断层走向近EW向; LOS向形变量分解表明, 此次地震破裂以右旋走滑为主; 滑动分布反演的形变残差介于0~5 cm之间, 发震断层的滑动量主要位于2~16 km深部, 最大滑动量可达1.02 m, 位于断层面深部5.83 km处, 最大滑动量处的滑动角为185.24°; 平均滑动角为181.32°, 平均滑动量为0.12 m; 滑动分布反演也证明该地震为右旋走滑破裂事件, 与LOS向形变分解结果一致; 当剪切模量μ=3.2 GPa时, 反演得到的地震矩震级约MW6.6。  相似文献   

11.
Introduction The development and application of Interferometric Synthetic Aperture Radar (InSAR) have a close relationship with the sensors development of Synthetic Aperture Radar (SAR). The conception of SAR is proposed comparatively to the real aperture radar antenna. It is well known that the longer the antenna is, the higher the observation resolution will be. Just limited by the length of the antenna, the resolution of real aperture radar is generally very low and cannot meet the r…  相似文献   

12.
IntroductionOnNovember14,2001,aMS=8.1earthquakeoccurredonthewestofKunlunshanPassintheborderareaofQinghaiandXinjiang,whichwasthestrongestearthquakeinChinesemainlandsincetheMS=8.0earthquakeoccurredinDangxiongdistrictofXizangAutonomousRegiononNovember18,1951.TheearthquakeoccurredontheEasternKunlunTectonicZone,whichwasapalaeoplatejunctionzoneinsideTibetanPlateau.ItdividedTibetanPlateauintothesouthandnorthparts.ThezoneplayedaveryimportantroleinTibetanPlateausdeformationprocessanddynamicev…  相似文献   

13.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm.  相似文献   

14.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. Foundation item: National Natural Science Foundation of China (40374013) and “Researching on the Disaster Earthquake” (2003) of Public Welfare Research Item, Ministry of Science and Technology of China.  相似文献   

15.
薛莲  孙建宝  沈正康 《地震地质》2011,33(1):157-174
2010年1月12日GMT时间21时53分,在海地境内(72.57°W,18.44°N)发生了Mw7.0地震.文中利用干涉合成孔径雷达(InSAR)方法获得了覆盖整个震区的高精度形变观测资料,用以研究该地震的发震机理.采用ALOs PALSAR数据,分析了轨道、大气等误差源对干涉信号的影响,最终获得了雷达视线向(LOS...  相似文献   

16.
邵叶  申旭辉  洪顺英  戴娅琼 《地震》2011,31(3):37-45
2010年4月14日青海玉树县发生了Ms7.1地震.本文利用差分干涉合成孔径雷达(D-InSAR)测量技术,通过对日本先进陆地观测卫星搭载的ALOS PALSAR获得的雷达数据进行处理,提取了此次地震的同震干涉形变场.结果表明,形变场分布特征与其发震断层甘孜-玉树断裂带的左旋走滑特征一致;最大视线向形变量为-61.4c...  相似文献   

17.
地震三维形变场对于研究地震发震机制等具有重要意义。 已有的InSAR三维形变场重构研究中, 只有中强地震的实例。 由于形变量级小、 InSAR方位向形变的误差较大, 中小地震的三维形变场重构易受噪声等影响。 本文以2016年5月22日西藏定日MW5.3地震为例, 开展中小地震三维形变场重构的尝试。 首先基于InSAR技术获取了Sentinel-1升轨和降轨观测模式下的同震形变场, 再结合同震形变场的特点、 区域构造特征等, 添加限定方程(走滑运动为0), 重构了同震三维形变场。 结果显示, 震中附近以下降为主, 幅度达7 cm, 南北方向形变较小(约2 mm), 此区域还伴有2 cm的西向水平运动; 形变中心区域东西两侧部分区域均出现少许东向运动(1.5 cm)。 由同震形变场特征判断此次地震以正断破裂为主。 本文提出了基于连续性分层采样选取样本点方法, 以适应本地震形变场的实际情况。 对所得的LOS向位移场和重构的三维形变场进行降采样, 反演得到了断层面上的滑动分布, 两种数据得到的结果相似, 最优发震断层的走向约181°, 倾角约45°, 断层错动平均滑动角约-87.1°, 平均滑动量约为3.6 cm, 最大滑动量位于深度6.5 km处, 相当于一次MW5.4的地震。  相似文献   

18.
利用Sentinel-1A卫星升降轨道数据和D-InSAR技术获得青海门源2022年1月8日MS6.9地震的同震形变场,并基于弹性半空间位错模型反演其震源参数,利用分布滑动模型确定断层面上的滑动分布。结果表明,2022年1月8日青海门源地震的同震形变场沿NWW-SEE方向分布;断裂带南缘升轨影像和降轨影像最大视距分别为61 cm和62 cm,断裂带北缘升轨影像和降轨影像最大视距地表形变量分别为43 cm和56 cm。InSAR同震形变场断裂尺度模型断层长30 km,宽18 km,最大滑移量3.5 m;断层滑动分布模型表明该地震为左旋走滑地震。结合冷龙岭断裂的运动特征和几何特征,初步确定此次MS6.9地震的发震断裂为冷龙岭断裂  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号