首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
The size-segregated chemical composition of aerosol particles was investigated during 1?year at the puy de D?me (1,465?m?a.s.l.), France. These measurements aimed to a better understanding of the influence of the air mass origin on the size-segregated chemical composition of the aerosol at an altitude site. Mountain site measurements are important because they are representative of long range transport and useful for model validation. PM1 mass concentration exhibits a seasonal variability with a summer maximum. The composition of PM1 did not change significantly in terms of relative contribution of water soluble inorganic ions but is rather variable in term of total mass concentrations. For the PM10-1, a different seasonal behaviour was found with maxima concentrations in autumn-winter. Aerosols were classified into four different categories according to their air mass origin: marine, marine modified, continental and Mediterranean. The PM10 aerosol mass at 50?% relative humidity was close to 2.5???g?m?3 in the marine, 4.3???g?m?3 in the marine modified, 10.3???g?m?3 in the continental and 7.7???g?m?3 in the Mediterranean sectors. We noted that the influence of the air mass origin (on the chemical properties) could be seen especially on the PM10-1. A significant PM10-1 mode was found in marine, modified marine, and Mediterranean air masses, and PM1 dominated in the continental air masses samples. As a result, the aerosol chemical composition variability at the puy de D?me is a function of both the season and air mass type and we provide a chemical composition of the aerosol as a function of each of these environmental factors.  相似文献   

2.
The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Åreskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.  相似文献   

3.
2007年,Ashok等揭示了赤道太平洋区域存在一种三极型分布海表温度异常并称之为厄尔尼诺-Modoki,同时定义了相应的海表温度异常指数EMI(记为IEM)。在此基础上,利用英国哈得来中心逐月海表温度资料、美国NCEP/NCAR月平均再分析数据集、美国国家海洋和大气管理局(NOAA)逐月降水资料(CMAP),通过在太平洋海表温度异常中扣除厄尔尼诺-Modoki信号后,在Nino1+2区域上定义了东太平洋型海表温度异常指数EPNI(IEPN)。据此,由IEPN和IEM可构成描述热带太平洋海表温度异常变化的一对指数。分析了两个指数相应的海气状态及对海洋性大陆区域气候异常的影响。结果表明,厄尔尼诺-Modoki和东太平洋型海表温度异常及其影响存在显著差异。在北半球夏季,当IEM处于正位相时,热带太平洋海表温度异常呈现“负-正-负”的结构,海洋性大陆大部分区域海表温度异常为负,此时对流层低层太平洋地区辐合,海洋性大陆地区辐散,对流层高层太平洋地区辐散,海洋性大陆地区辐合。对应于辐合辐散中心,存在着自赤道中太平洋分别向赤道东太平洋和海洋性大陆中东部地区的异常垂直环流圈,同时也存在自海洋性大陆西部向印度洋西部的垂直环流。大气在海洋性大陆区域北部加热,南部冷却;在太平洋地区西部加热而东部冷却;在海洋性大陆区域10°N以南降水偏少,而10°N以北降水偏多。当IEPN处于正位相时,热带太平洋海表温度异常呈现“西负东正”分布型,海洋性大陆区域海表温度异常呈现“西正东负”分布,对流层低层海洋性大陆地区辐散中心范围偏大、位置偏东、强度偏强,太平洋地区辐合中心范围偏小、位置偏东,热带环流异常在垂直方向上呈斜压结构,海洋性大陆区域北部大气加热而南部冷却,太平洋地区大气均呈加热正异常,海洋性大陆大部分区域降水均偏少,赤道太平洋降水偏多。以上这些结果有利于深刻理解热带太平洋海表温度异常的特征及其对海洋性大陆区域气候的影响。  相似文献   

4.
Chemical characteristics of haze during summer and winter in Guangzhou   总被引:33,自引:0,他引:33  
Airborne particles were collected with a 10-stage MOUDI and a PM10 sampler in Guangzhou, China, during both haze and normal days in the summer of 2002 and 2003, and winter 2002. The characteristics of PAHs, organic carbon, elemental carbon and water-soluble inorganic ions were studied under four periods (summer normal, summer haze, winter normal and winter haze). In this study, secondary pollutants (OC, SO42−, NO3 and NH4+) were the major chemical components and appeared to show a remarkably rapid increase from normal to haze days. The particle mass size distributions were bimodal and dominated by fine particles in haze days. A significantly higher OC/EC ratio was found in haze days (3.2–4.7) compared to normal days (1.8–2.8), indicating secondary organic aerosol formation might be significant during haze days. Correlation analysis between visibility and chemical species showed that the major scattering species were TC (total carbon) and sulfate in normal days and nitrate and TC in haze days, respectively. Simultaneously, correlation analysis between visibility and meteorological factors demonstrated that visibility increased with both temperature and wind speed, while it decreased with relative humidity. Furthermore, the relatively higher value of IcdP/(BghiP + IcdP) and the low value of Cmax, CPI, and BghiP/BeP in winter haze could be due to the growth of motor vehicle usage and energy consumption in winter.  相似文献   

5.
The contribution of emissions from agricultural facilities is rapidly becoming a major concern for local and regional air quality. Characterization of particle properties such as physical size distribution and chemical composition can be valuable in understanding the processes contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to characterize near-source ambient particulate matter. Size-specific mass concentrations were determined using minivol samplers, with additional size distribution information obtain using optical particle counters. Particulate composition was determined via ion chromatographic analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured particulate carbon. The chemical composition and size distribution of sub-micron particles were determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a major emission from the examined facility, with filter-based impactor samples showing average near-source increases (~15–50 m) in ambient PM10 of 5.8 ± 2.9 μg m−3 above background levels. PM2.5 also showed contribution attributable to the facility (1.7 ± 1.1 μg m−3). Optical particle counter analysis of the numerical size distributions showed bimodal distributions for both the upwind and downwind conditions, with maximums around 2.5 μm and below the minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of coarse particles (PM10) during periods when wind transport came from the barns, but the differences were not statistically significant at the 95% confidence level. The PM10 aerosols showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic carbon was the major constituent of the barn-impacted particulate matter in both sub-micron (54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar species increases, with the exception of and Ca+2, the latter not quantified by the AMS.  相似文献   

6.
Results are presented of monitoring measurements of the mass concentration of PM10 (particles with the size of less than 10 μm) and PM2.5 (less than 2.5 μm) fine-dispersed aerosol fractions at the Sainshand and Zamyn-Üüd stations located in the Gobi Desert of Mongolia. Revealed are the annual variations of the mass concentration of PM10 and PM2.5 fine-dispersed aerosol fractions at these stations in 2008. The maximum values of monthly mean concentration during the year were observed in May in the period of dust storms. On the days with the steady calm weather, the mass concentrations of PM10 and PM2.5 varied within 5–8 μg/m3 (PM10) and 3–5 μg/m3 (PM2.5) at the Sainshand station. During the dust storms, the maximum values of concentration exceeded 1400 μg/m3 (PM10) and 380 μg/m3 (PM2.5) that is by 28 (PM10) and 15 (PM2.5) times higher than the maximum permissible concentration for the European Union. Results are given of studying the frequency and duration of dust storms in recent 20 years (1991–2010) in the Eastern Gobi Desert.  相似文献   

7.
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m− 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

8.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

9.
An extensive aerosol sampling program was conducted during January-December 2006 over Kolkata (22o33?? N and 88o20?? E), a mega-city in eastern India in order to understand the sources, distributions and properties of atmospheric fine mode aerosol (PM2.5). The primary focus of this study is to determine the relative contribution of natural and anthropogenic as well as local and transported components to the total fine mode aerosol loading and their seasonal distributions over the metropolis. The average concentrations of fine mode aerosol was found to be 71.2?±?25.2???gm-3 varying between 34.5???gm-3 in monsoon and 112.6???gm-3 in winter. The formation pathways of major secondary aerosol components like nitrate and sulphate in different seasons are discussed. A long range transport of dust aerosol from arid and semi-arid regions of western India and beyond was observed during pre-monsoon which significantly enriched the total aerosol concentration. Vehicular emissions, biomass burning and transported dust particles were the major sources of PM2.5 from local and continental regions whereas sea-salt aerosol was the major source of PM2.5 from marine source regions.  相似文献   

10.
Measurements in Alaska in sub-polar night conditions have indicated that the size distribution of atmospheric aerosols varies significantly and systematically depending upon the type of air mass. Atmospheric aerosol particles are small and numerous in warm Pacific marine air mass systems and large and sparse in cold, Arctic-derived air mass systems. In a previous paper this was hypothesized to be associated with the progressive loss of the smallest particles by attachment to cloud droplets under the driving influence of thermal Brownian motion. A theory involving two parameters, (mean particle radius), and n0 (aerosol number concentration) was developed to describe the process. In the previous paper, the relationship where ν is the Junge power law exponent (ν 3) was derived and has recently been confirmed to acceptable accuracy with the use of a simple experiment which employed diffusive separation. The diffusion experiment has also allowed us to estimate that the fraction of time, φ, that the aerosol-laden polar air masses coexist in the presence of cloud is 0.01 < φ < 0.1. The submicron aerosol particles in Arctic-derived air masses flowing into central Alaska are deduced to have residence times on the order of 10 days.  相似文献   

11.
This paper deals with the atmospheric concentrations of PM5 and PM2.5 particulate matter and its water soluble constituents along with the size distribution of ions and spatial variation at three different residential environments in a semiarid region in India. Samples were collected from the indoors and outdoors of urban, rural and roadside sites of Agra during October 2007–March 2008. The mean concentrations of PM2.5 indoors and outdoors were 178 μgm−3 and 195 μgm−3 while the mean concentrations of PM5 indoors and outdoors were 231.8 μgm−3 and 265.2 μgm−3 respectively. Out of the total aerosol mass, water soluble constituents contributed an average of 80% (33% anions, 50% cations) in PM5 and 70% (29% anions, 43% cations) in PM2.5. The indoor–outdoor ratio of water soluble components suggested additional aerosol indoor sources at rural and roadside sites. Indoor–outdoor correlations were also determined which show poor relationships among concentrations of aerosol ions at all three sites. Univariate Pearson correlation coefficients among water soluble aerosols were determined to evaluate the relationship between aerosol ions in indoor and outdoor air.  相似文献   

12.
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern–central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.  相似文献   

13.
To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4 +, Mg2+, Ca2+, K+, Cl?, SO4 2?, NH4 +, F?, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m?3), accounting for 63.8 % of the total cation and NH4 + (mean: 164 ng m?3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl? (576 ng m?3, 54.1 %) and SO4 2? (596 ng m?3, 38.0 %). The main organic anion was oxalate (18 ng m?3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl? rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.  相似文献   

14.
南京北郊2011年春季气溶胶粒子的散射特征   总被引:3,自引:2,他引:1       下载免费PDF全文
利用南京北郊2011年春季积分浊度仪的观测资料,结合PM2.5质量浓度、能见度和常规气象资料,分析了南京北郊春季气溶胶散射系数的变化特征、散射系数与PM2.5质量浓度和能见度的关系。结果表明,观测期间气溶胶散射系数平均值为311.5±173.3 Mm-1,小时平均值出现频率最高的区间为100~200 Mm-1;散射系数的日变化特征明显,总体为早晚大,中午及午后小。散射系数与PM2.5质量浓度的变化趋势基本一致,但与能见度呈负相关关系。霾天气期间散射系数日平均值为700.5±341.4 Mm-1,最高值达到近1 900 Mm-1;结合地面观测资料、NCEP/NCAR再分析资料和后向轨迹模式分析显示,霾期间气块主要来自南京南部和东南方向。  相似文献   

15.
Spokane, WA is prone to frequent particulate pollution episodes due to dust storms, biomass burning, and periods of stagnant meteorological conditions. Spokane is the location of a long-term study examining the association between health effects and chemical or physical constituents of particulate pollution. Positive matrix factorization (PMF) was used to deduce the sources of PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) at a residential site in Spokane from 1995 through 1997. A total of 16 elements in 945 daily PM2.5 samples were measured. The PMF results indicated that seven sources independently contribute to the observed PM2.5 mass: vegetative burning (44%), sulfate aerosol (19%), motor vehicle (11%), nitrate aerosol (9%), airborne soil (9%), chlorine-rich source (6%) and metal processing (3%). Conditional probability functions were computed using surface wind data and the PMF deduced mass contributions from each source and were used to identify local point sources. Concurrently measured carbon monoxide and nitrogen oxides were correlated with the PM2.5 from both motor vehicles and vegetative burning.  相似文献   

16.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   

17.
不同降水强度对PM2.5的清除作用及影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
云和降水过程是大气污染物的重要清除途径,但由于降水过程和大气污染颗粒物本身的复杂性,目前降水过程对大气污染物的清除机制及影响因素有待深入研究。该文利用2014年3月—2016年7月在北京地区连续观测的PM2.5和降水数据,研究了不同降水强度对PM2.5的清除率,以及雨滴谱、风速和降水持续时间对PM2.5清除率的影响。研究表明:降水强度越大,对PM2.5清除效率越高。小雨、中雨和大雨对PM2.5清除率平均值分别为5.1%,38.5%和50.6%。小雨不但对PM2.5的清除率最低,而且对PM2.5的清除效果也存在很大差异,约50%的小雨个例中PM2.5质量浓度出现减小情况,而另外50%的小雨个例中,PM2.5质量浓度出现增加情况。在持续时间长或地面风速增大的情况下,小雨也表现出较高的清除率。在中雨和大雨情况下,PM2.5质量浓度均出现明显减小情况。但降水持续时间和风速对中雨和大雨的清除率影响较小,这是由于中雨和大雨一般在较短时间内即可清除大部分PM2.5,因此,对降水的持续时间和风速大小不敏感。  相似文献   

18.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

19.
Based on observations of urban mass concentration of fine particulate matter smaller than 2.5 μm in diameter (PM2.5), ground meteorological data, vertical measurements of winds, temperature, and relative humidity (RH), and ECMWF reanalysis data, the major changes in the vertical structures of meteorological factors in the boundary layer (BL) during the heavy aerosol pollution episodes (HPEs) that occurred in winter 2016 in the urban Beijing area were analyzed. The HPEs are divided into two stages: the transport of pollutants under prevailing southerly winds, known as the transport stage (TS), and the PM2.5 explosive growth and pollution accumulation period characterized by a temperature inversion with low winds and high RH in the lower BL, known as the cumulative stage (CS). During the TS, a surface high lies south of Beijing, and pollutants are transported northwards. During the CS, a stable BL forms and is characterized by weak winds, temperature inversion, and moisture accumulation. Stable atmospheric stratification featured with light/calm winds and accumulated moisture (RH > 80%) below 250 m at the beginning of the CS is closely associated with the inversion, which is strengthened by the considerable decrease in near-surface air temperature due to the interaction between aerosols and radiation after the aerosol pollution occurs. A significant increase in the PLAM (Parameter Linking Aerosol Pollution and Meteorological Elements) index is found, which is linearly related to PM mass change. During the first 10 h of the CS, the more stable BL contributes approximately 84% of the explosive growth of PM2.5 mass. Additional accumulated near-surface moisture caused by the ground temperature decrease, weak turbulent diffusion, low BL height, and inhibited vertical mixing of water vapor is conducive to the secondary aerosol formation through chemical reactions, including liquid phase and heterogeneous reactions, which further increases the PM2.5 concentration levels. The contribution of these reaction mechanisms to the explosive growth of PM2.5 mass during the early CS and subsequent pollution accumulation requires further investigation.  相似文献   

20.
A coupled aerosol–cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES–CUACE [Global/Regional Assimilation and PrEdiction System–China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length.Based on the above improvements, the GRAPES–CUACE simulations were verified against observational data during 1–31 January 2013, when a series of heavy regional haze–fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient grew from 0.35 to 0.61, and the mean mass concentration went up from 43% to 87.5% of the observed value. Thus, the simulation of particulate matters in these areas has been improved considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号