首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Traditional flood‐frequency analysis involves the assumption of homogeneity of the flood distribution. However, floods are often generated by heterogeneous distributions composed of a mixture of two or more populations. Differences between the populations may be the result of a number of factors, including seasonal variations in the flood‐producing mechanisms, changes in weather patterns resulting from low‐frequency climate shifts and/or El Niño/La Nina oscillations, changes in channel routing owing to the dominance of within‐channel or floodplain flow, and basin variability resulting from changes in antecedent soil moisture. Not recognizing these physical processes in conventional flood‐frequency analysis probably is the main reason that many frequency distributions do not provide an acceptable fit to flood data. In this paper, we use long‐term hydroclimatic records from the Gila River basin of south‐east and central Arizona in the USA to explore the extent and significance of mixed populations. First, we discuss the probable causes of heterogeneity in the frequency distribution of annual flood and present evidence of its occurrence. Second, we investigate the implications of using various popular homogeneous distributions for predicting peak flows for basins that exhibit mixed population characteristics. Third, we demonstrate how alternative frequency models that explicitly account for floods generated by a mixture of two or more populations are both hydrologically and statistically more appropriate. We illustrate how the selection of the most plausible distribution for flood‐frequency analysis also should be based on hydrological reasoning as opposed to the sole application of the traditional statistical goodness‐of‐fit tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Lei Wang  Jaehyung Yu 《水文研究》2012,26(19):2973-2984
The construction of stormwater detention basins is a best management practice to effectively control floods, to provide additional surface storage for excess floodwater and to compensate for the adverse effects of urban development. Traditional field‐based levelling survey methods are very time consuming and subject to human‐induced arbitrariness and error. This article presents an approach to modelling detention basins measured from light detection and ranging remote sensing data. A case study is illustrated by using the White Oak Bayou watershed of Harris County, Texas. The storage–stage curve obtained from the volumetric analysis is used in a modified detention basins routing model, which was developed by adding the weir structure control to the traditional hydrologic reservoir routing equations. The model simulation showed that the peak flow of the synthetic 100‐year reoccurrence event was effectively reduced and delayed by the detention basins. The comparison with the simulation results from the traditional reservoir routing model suggested that previous studies using the reservoir routing model were likely to underestimate the flood reduction effect of detention basins. The sensitivity analysis of the parameters showed that the detention basin design and evaluation should pay more attention on the weir height and river channel's roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

6.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Robert E. Criss 《水文研究》2018,32(11):1607-1615
The rainfall–run‐off convolution integral is analytically solved for several models for the elementary hydrograph. These solutions can be combined with available rainfall frequency analyses to predict flood flows along streams for different recurrence intervals, using no free parameters for gauged streams and one estimable parameter for ungauged streams. Extreme discharge magnitudes at gauged sites can be typically estimated within a factor of two of actual records, using no historical data on extreme flows. The flow predictions reproduce several important characteristics of the flood phenomenon, such as the slope of the regression line between observed extreme flows and basin area on the conventional logQ versus logA plot. Importantly, for the models and data sets investigated, the storm duration of greatest significance to flooding was found to approximate the intrinsic transport timescale of the particular watershed, which increases with basin size. Thus, storms that deliver extraordinary amounts of rainfall over a particular time interval will most greatly activate basins whose time constants approximately equal that interval. This theoretical finding is supported by examination of the regional hydrological response to the massive storms of September 14, 2008, and April 28–30, 2017, which caused extraordinary record flooding of basins of about 5–100 km2 and 500–4,000 km2, respectively, but produced few records in basins that were larger or smaller than those ranges.  相似文献   

9.
10.
Beach‐ridge systems are important geo‐archives providing evidence for past wave climate including catastrophic storm flood events. This study investigates the morphological impacts of the 1872 Baltic storm flood on a beach‐ridge system (sandy spit) in south‐eastern Denmark and evaluates the frequency of extreme storm flood events in the area over a longer time perspective. This paper combines field studies of morphology and sedimentary deposits, studies of historical maps, digital terrain model, ground‐penetrating radar profiles, and luminescence dating. Sea water reached 2.8 m above mean sea level (amsl) during peak inundation and, based on studies of the morphological impacts of the 1872 storm flood, the event can be divided into four phases. Phase 1: increasing mean water levels and wave activity at the beach brought sediments from the beach (intertidal bars and normal berm) higher up in the profile and led to the formation of a storm‐berm. Phase 2: water levels further increased and sediment in the upper part of the profile continued to build up the storm‐berm. Phase 3: water levels now reached the top of the dune ridge and were well above the storm‐berm level. Sea water was breaching the dune ridge at several sites and wash‐over fans were generated until a level where the mean water level had dropped too much. Phase 4: the non‐vegetated wash‐over fans functioned as pathways for aeolian sand transport and relatively high dunes were formed in particular along the margins of the fan where aeolian sand was trapped by existing vegetation. The studied beach‐ridge system records about 4500 years of accumulation; the storm flood sediments described are unique suggesting that the 1872 Baltic storm flood event was an extreme event. Thus studies of beach‐ridge systems form a new source for understanding storm surge risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A method is presented to evaluate the storm runoff contributions from different land‐use class areas within a river basin using the geographical information system‐based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land‐use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo‐hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land‐use areas in this catchment, and this tends to increase for small floods and for the dry‐season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land‐use class areas within the study catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Detention basins are used to capture postdevelopment runoff and control the peak discharge of the outflow using orifices and weirs. The use of detention basins is typical practice in the construction of new developments on the fringe of existing urban areas, such as the Ulsan–Hwabong district in the city of Ulsan, South Korea. In this study, the required volume and flooding area of a detention basin was determined to control development outflow peaks for 2‐year, 10‐year, and 100‐year design storms with type II rainfall distributions as characterized by the US Department of Agriculture's Soil Conservation Service method. The rainfall–runoff simulation model used was the US Environmental Protection Agency's Storm Water Management Model (EPA‐SWMM) 5, which is the latest version of the software, updated for Windows. We designed three cases of detention basins multi‐staged by 2‐year, 10‐year, and 100‐year design storms and verified the designs with the application of 49 years (1961–2009) of hourly historical rainfall data. The three detention basin designs were compared in terms of the total construction and land costs as well as the benefits associated with recreational facilities or parking lot use. As a result, the design sizes of the detention basins are slightly greater than the actual sizes needed based on the historical rainfall application. Multi‐use detention basins (MDBs) based on 2‐year and 10‐year design storms were found to yield 37.4% and 22.8% benefits, respectively, for recreational facility use compared with detention basins without multi‐use space, and the results also indicate that benefits accrue after 6.5 years for parking lot use. The results of this study suggest that an MDB based on a 2‐year design storm is the most cost‐effective design among the three cases considered for Ulsan, South Korea. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
L. Brocca  F. Melone  T. Moramarco 《水文研究》2011,25(18):2801-2813
Nowadays, in the scientific literature many rainfall‐runoff (RR) models are available ranging from simpler ones, with a limited number of parameters, to highly complex ones, with many parameters. Therefore, the selection of the best structure and parameterisation for a model is not straightforward as it is dependent on a number of factors: climatic conditions, catchment characteristics, temporal and spatial resolution, model objectives, etc. In this study, the structure of a continuous semi‐distributed RR model, named MISDc (‘Modello Idrologico Semi‐Distribuito in continuo’) developed for flood simulation in the Upper Tiber River (central Italy) is presented. Most notably, the methodology employed to detect the more relevant processes involved in the modelling of high floods, and hence, to build the model structure and its parameters, is developed. For this purpose, an intense activity of monitoring soil moisture and runoff in experimental catchments was carried out allowing to derive a parsimonious and reliable continuous RR model operating at an hourly (or smaller) time scale. Specifically, in order to determine the catchment hydrological response, the important role of the antecedent wetness conditions is emphasized. The application of MISDc both for design flood estimation and for flood forecasting is reported here demonstrating its reliability and also its computational efficiency, another important factor in hydrological practice. As far as the flood forecasting applications are concerned, only the accuracy of the model in reproducing discharge hydrographs by assuming rainfall correctly known throughout the event is investigated indepth. In particular, the MISDc has been implemented in the framework of Civil Protection activities for the Upper Tiber River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A methodology is proposed for constructing a flood forecast model using the adaptive neuro‐fuzzy inference system (ANFIS). This is based on a self‐organizing rule‐base generator, a feedforward network, and fuzzy control arithmetic. Given the rainfall‐runoff patterns, ANFIS could systematically and effectively construct flood forecast models. The precipitation and flow data sets of the Choshui River in central Taiwan are analysed to identify the useful input variables and then the forecasting model can be self‐constructed through ANFIS. The analysis results suggest that the persistent effect and upstream flow information are the key effects for modelling the flood forecast, and the watershed's average rainfall provides further information and enhances the accuracy of the model performance. For the purpose of comparison, the commonly used back‐propagation neural network (BPNN) is also examined. The forecast results demonstrate that ANFIS is superior to the BPNN, and ANFIS can effectively and reliably construct an accurate flood forecast model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The study simulated the effect of using reservoir storage for reducing flood peaks and volumes in urban areas with the Dzorwulu basin in Accra, Ghana as case study. A triangulated irregular network surface of the floodplain was created using ArcGIS from ESRI by integrating digital elevation model and the map of the study area. The weighted curve number for the basin was obtained from the land use and soil type shape files using ArcGIS. The Soil Conservation Service curve number unit hydrograph procedure was used to obtain an inflow hydrograph based on the highest rainfall recorded in recent history (3–4 June 1995) in the study area and then routed through an existing reservoir to assess the impact of the reservoir on potential flood peak attenuation. The results from the analysis indicate that a total of 13.09 × 106 m3 of flood water was generated during this 10‐h rainstorm, inundating a total area of 6.89 km2 with a depth of 4.95 m at the deepest section of the basin stream. The routing results showed that the reservoir has capacity to store 34.52% of the flood hydrograph leading to 45% reduction in flood peak and subsequently 38.5% reduction in flood inundation depth downstream of the reservoir. From results of the study, the reservoir storage concept looks promising for urban flood management in Ghana, especially in communities that are over‐urbanized downstream but have some space upstream for creating the storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号