首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
In the present paper, by introducing the effective wave elevation, we transform the extended ellip- tic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)’s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly vary- ing topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.  相似文献   

2.
The RIDE model: an enhanced computer program for wave transformation   总被引:1,自引:0,他引:1  
A wave transformation model (RIDE) was enhanced to include the process of wave breaking energy dissipation in addition to water wave refraction, diffraction, reflection, shoaling, bottom friction, and harbor resonance. The Gaussian Elimination with partial Pivoting (GEP) method for a banded matrix equation and a newly developed bookkeeping procedure were used to solve the elliptic equation. Because the bookkeeping procedure changes the large computer memory requirements into a large hard-disk-size requirement with a minimum number of disk I/O, the simple and robust GEP method can be used in personal computers to handle realistic applications. The computing time is roughly proportional to N1.7, where N is the number of grid points in the computing domain. Because the GEP method is capable of solving many wave conditions together (limited by having the same wave period, no bottom friction and no breaking), this model is very efficient compared to iteration methods when simulating some of the wave transformation process.  相似文献   

3.
Based on the time-dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation. The wave height of regular and irregular waves is numerically simulated by use of the parabolic mild slope equation considering the energy dissipation due to wave breaking. Comparison of numerical results with experimental data shows that the expression for the energy dissipation factor is reasonable. The effects of the wave breaking coefficient on the breaking point and the distribution of wave height after breaking are discussed through the study of a specific experimental topography.  相似文献   

4.
Since the mild-slope equation was derived by Berkhoff (1972),the researchers considered various mechanism to simplify and improve the equation,which has been widely used for coastal wave field calculation.Recently,some scholars applied the mild-slope equation in simulating the tidal motion,which proves that the equation is capable to calculate the tide in actual terrain.But in their studies,they made a lot of simplifications,and did not consider the effects of Coriolis force and bottom friction on tidal wave.In this paper,the first-order linear mild-slope equations are deduced from Kirby mild-slope equation including wave and current interaction.Then,referring to the method of wave equations’ modification,the Coriolis force and bottom friction term are considered,and the effects of which have been performed with the radial sand ridges topography.Finally,the results show that the modified mild-slope equation can be used to simulate tidal motion,and the calculations agree well with the measurements,thus the applicability and validity of the mild-slope equation on tidal simulation are further proved.  相似文献   

5.
Estimates of area-averaged tidal bottom stress are made for four channel segments of the Great Bay Estuary, N.H. Current and sealevel measurements are used to estimate acceleration and pressure gradient terms in the equation of motion, while the equation of motion itself is used to infer the remaining stress term. Dynamic terms, bottom stress values, friction coefficients and energy dissipation rates are estimated for each site. The analysis shows that while throughout the estuary the principal force balance is between the frictional stress and the pressure gradient forcing, RMS values of total bottom stress range from 2·67 to 10·38 Nm?2 and friction coefficients vary from 0·015 to 0·054. Both stress and energy dissipation are largest in the seaward portion of the estuary with an order of magnitude decrease in dissipation at the most inland site.These distributions of stress and energy dissipation are consistent with cotidal charts of the principal semi-diurnal tidal constituent (M2) which indicate that the estuary is composed of a highly dissipative more progressive tidal wave regime seaward and a less dissipative standing wave regime landward.  相似文献   

6.
Numerical Simulation of Wave Height and Wave Set-Up in Nearshore Regions   总被引:2,自引:3,他引:2  
Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and then a practical method for the simulation of wave height and wave set-up in nearshore regions is presented. The variation of the complex wave amplitude is numerically simulated by use of the parabolic mild slope equation including the effect of wave energy dissipation due to wave breaking. The components of wave radiation stress are calculated subsequently by new expressions for them according to the obtained complex wave amplitude, and then the depth-averaged equation is applied to the calculation of wave set-up due to wave breaking. Numerical results are in good agreement with experimental data, showing that the expression for the energy dissipation factor is reasonable and that the new method is effective for the simulation of wave set-up due to wave breaking in nearshore regions.  相似文献   

7.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   

8.
Wave-Current Propagation over a Frictional Topography   总被引:1,自引:0,他引:1  
—In this paper the parabolic approximation model based on mild-slope equation is used tostudy wave propagation over a slowly varying and frictional topography under wave-current interaction.A governing equation considering the friction effects is derived by the authors for the first time.A simpli-fied form for the rate of wave energy dissipation is presented on the basis of the wave-current action conser-vation equation and the bottom friction model given by Yoo and O'connor(1987).Examples reveal thatthe present computational method can be used for the calculation of wave elements for actual engineeringprojects with large water areas.  相似文献   

9.
一种近岸区波浪破碎模型   总被引:7,自引:0,他引:7  
从波浪破碎的能量关系入手,以紊流能量方程为基础,考虑破碎区内单个波在不同破碎阶段所提供的紊动能量强度的变化过程,提出了一种波浪破碎模式.通过将这一模型引入Boussinesq方程中,初步建立了一种近岸区波浪变形数学模型,并用波浪水槽实验资料对模型模拟波高和平均水位的情况进行了初步验证,得到了良好的结果.  相似文献   

10.
A nearshore wave breaking model   总被引:4,自引:0,他引:4  
AnearshorewavebreakingmodelLiShaowu,WangShangyi,TomoyaShibayama(ReceiuedOctober8,1996;acceptedFebruary26,1997)Abstract-Awaveb...  相似文献   

11.
近岸波浪破碎区不规则波浪的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
唐军  沈永明  崔雷  邱大洪 《海洋学报》2008,30(2):147-152
基于近岸不规则波浪传播的抛物型缓坡方程和两类波浪破碎能量损耗因子,对近岸波浪破碎区不规则波浪的波高分布进行了数值模拟,并结合实验结果对数值模拟结果进行了验证分析,结果表明采用两类波浪破碎能量损耗因子所模拟的破碎区波高与实测值均吻合良好,波浪破碎能量损耗因子及波浪破碎指标对破碎区波浪波高分布影响较明显。  相似文献   

12.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

13.
The role of bottom friction in the runup of nonbreaking long waves on the shore is analyzed. The case of the normal incidence of monochromatic waves is considered. The relief of the model region consists of an even horizontal bottom area conjugated with a flat slope. The energy dissipation is estimated as the work of bottom friction forces over the wave field obtained using the known analytical solution based on the Carrier-Greenspan transforms. Estimates of energy losses for waves whose periods are typical for tsunami waves have been obtained. The energy dissipation is shown to be not concentrated in the shore line area as a rule. The question about the practicability of using partially reflecting boundary conditions on the coast to take into account the bottom friction in large-scale models of tsunami propagation is considered.  相似文献   

14.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

15.
刘子龙  史剑  蒋国荣 《海洋科学》2017,41(3):122-129
基于海浪模式WAVEWATCH Ⅲ模拟北太平洋海浪要素,结合NDBC浮标资料进行验证,发现模拟出的有效波高与浮标测量值具有很好的一致性。基于改进型白冠覆盖率耗散模型,利用海浪模式模拟出的有效波高、有效波周期和摩擦速度等海浪要素计算出单位面积水柱内因海浪破碎产生的湍动能通量。通过改变环流模式sbPOM湍动能方程的上边界条件,引入海浪破碎产生的湍动能通量,并探究海浪破碎对北太平洋海表面温度模拟的影响。研究表明,由于海浪破碎的引入,环流模式sbPOM对北太平洋海表面温度模拟的准确程度得到提升,这为大气模式提供一个准确的北太平洋下边界条件具有重要意义。  相似文献   

16.
海岸波浪多次破碎波能耗散模型   总被引:1,自引:0,他引:1  
闫圣  邹志利 《海洋学报》2020,42(9):30-37
在坡度很缓(接近或小于1∶100)的海岸,波浪在向海岸传播的过程中,可能经历多次破碎,而在两次波浪破碎之间将伴随着波浪恢复(波浪恢复到不破碎状态)。在现有海岸波高计算模型中,波浪破碎是通过波能耗散来模拟的,但所采用的波能耗散模型都不能自动考虑波浪出现多次破碎的过程,特别精确模拟这一过程中出现的波浪恢复。本文提出了解决这一问题的新的波能耗散模型,模型的建立是通过在Dally模型中重新建立稳定波能、饱和波高水深比和波能耗散系数,并引入了波浪恢复的判断条件实现的。该模型的波能耗散在波浪恢复区的值很小故能描述波浪恢复区的波浪运动。与实验结果的对比表明,新模型可以适合缓坡情况波浪多次破碎的波高模拟,而且对不同坡度的平坡和沙坝海岸(1∶100~1∶10)的破碎波模拟都可以给出与实验结果符合的结果,并且可以自动识别多次波浪破碎的存在和波浪恢复的发生。  相似文献   

17.
LAGFD-WAM海浪数值模式是一种第三代海浪数值模式,通过求解波数谱平衡方程,并考虑风输入、波浪破碎耗散、底摩擦耗散、波波非线性相互作用和波流相互作用等源函数,模拟波数空间下的海浪方向谱,并依此获得海浪的波高、周期和平均波向。该模式的一个显著特点是采用特征线嵌入格式求解海浪的传播。在进行浅水区域的海浪模拟时,特征线嵌入格式的数值计算方案是否合理对海浪数值模拟结果产生直接的影响。为此LAGFD-WAM海浪数值模式提出了一种新的特征线混合数值计算格式,并应用于浅水海浪数值模拟。结果表明,采用该计算方法,能够使数值模拟结果与实测结果很好符合。  相似文献   

18.
黄虎  周锡礽  吕秀红 《海洋学报》2000,22(4):101-106
由于缓坡方程计算量大和其本身的缓坡假定而在实际应用中受到了限制,故对斯托克斯波在非平整海底(适用于缓坡和陡坡地形)上传播的Liu和Dingemans的三阶演化方程进行抛物逼近,得到一个新的非线性抛物型方程,它能够包含同类方程未曾考虑的二阶长波效应.通过数值计算结果与Berkhoff等人的经典实验数据的比较,证明所提出的抛物型模型理论具有较高的精度.  相似文献   

19.
A laboratory study on the turbulence and wave energy dissipations of spilling breakers in a surf zone is presented. Instantaneous velocity fields of propagating breaking waves on a 1/20 slope were measured using Particle Image Velocimetry (PIV). Due to the large region of the evolving wave breaking generated turbulent flow, seven PIV fields of view (FOVs) were mosaicked to form a continuous flow field in the surf zone. Mean and turbulence quantities were extracted by ensemble averaging 25 repeated instantaneous measurements at each FOV. New results for distribution and evolution of turbulent kinetic energy, mean flow energy, and total energy across the surf zone were obtained from analyzing the data. The turbulence dissipation rate was estimated based on several different approaches. It was found that the vertical distribution of the turbulence dissipation rate decays exponentially from the crest level to the bottom. The resulting energy budget and energy flux were also calculated. The calculated total energy dissipation rate was compared to that based on a bore approximation. It was found that the ratio of turbulence dissipation rate to total energy dissipation rate was about 0.01 in the outer surf zone and increased to about 0.1 after the breaking waves transformed into developed turbulent bores in the inner surf zone.  相似文献   

20.
A parabolic equation extended to account for rapidly varying topography   总被引:1,自引:0,他引:1  
In this paper, following the procedure outlined by Li (1994. An evolution equation for water waves. Coastal Engineering, 23, 227-242) and Hsu and Wen (2000. A study of using parabolic model to describe wave breaking and wide-angle wave incidence. Journal of the Chinese Institute of Engineers, 23(4), 515–527) and Hsu and Wen (2000) the extended refraction–diffraction equation is recasted into a time-dependent parabolic equation. This model, which includes higher-order bottom effect terms, is extended to account for a rapidly varying topography and wave energy dissipation in the surf zone. The importance of the higher-order bottom effect terms is examined in terms of the relative water depth. The present model was tested for wave reflection in a number of different environments, namely from a plane slope with different inclinations, from a patch of periodic ripples. The model was also tested for wave height distribution around a circular shoal and wave breaking on a barred beach. The comparison of predictions with other numerical models and experimental data show that the validity of the present model for describing wave propagation over a rapidly varying seabed is satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号