首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Many of the states in India have been facing water scarcity for more than 2 decades due to increased demand, because of the increase in population and higher living standards. Consequently, many states have almost fully utilized the available surface water resources and are exploiting groundwater to augment water supplies. Investigations were carried out in the upper Thurinjalar watershed of Ponnaiyar basin in Tamil Nadu to determine the availability of surface water and to investigate the potential for enhancing groundwater recharge to support the water demand in the watershed. Increasing the water availability would also enable the community to convert the 46% of the land area in the watershed that is currently underutilised into productive uses. The surface water potential for the upper Thurinjalar watershed was assessed by applying the USDA–NRCS model with daily time steps. This modelling exercise indicated that the annual runoff from the 323 km2 area of the watershed is 61 million m3. Groundwater recharge in the watershed was assessed by carrying out daily water balance method and indicated that about 43 million m3 of water from recharge is available on an annual basis or about 14% of annual rainfall. A simple regression model was developed to compute groundwater recharge from rainfall based on water balance computations and this was statistically verified. The modelling indicated that there is sufficient water available in the watershed to support current land uses and to increase the productivity of underutilised land in the area. The study also demonstrates that simple regression models can be used as an effective tool to compute groundwater recharge for ungauged basins with proper calibration.  相似文献   

2.
The selected study area is a coastal watershed which receives high rainfall in the monsoon season. During this period, most of the water input to the watershed drains to the Arabian Sea without any adequate use due to the rugged topography of the watershed. Hence, an attempt has been made to assess the physical properties specifically morphometric parameters of the Gad watershed using geoinformatics techniques along with field evidence for understanding the relationship between fluvial landforms and hydro-physical parameters in the region. Morphometric parameters have been analyzed and integrated with physical parameters like topography, rainfall, soil, land use–land cover, geology, and geomorphology for evaluating the potential water resource availability in the Gad watershed. The results of the study have shown that there is high surface water availability in the watershed with very low water retaining capacity, mainly in the upper region of the watershed due to presence of basaltic bedrock and steep slopes. Based on this work, a water resource management plan has been suggested at a subwatershed level which established on the physical properties and morphological characteristics of the study area.  相似文献   

3.
《China Geology》2021,4(3):498-508
The surface watershed and groundwater basin have fixed recharge scale, which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern. To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area, especially when the boundary are inconsistent. In this study, the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case. Based on the multidisciplinary comprehensive analysis of topography, tectonics, hydrogeology, groundwater dynamics and stable isotopes, the results suggest the following: (1) The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent. The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect. The surface drainage area of Dalinuoer Lake is 6139 km2. The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km2, and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km2. (2) The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake, and it has greater recharge effects than the northern Gonggeer River system. (3) It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon (EASM) climate systems, which further pinpoints the predecessor’s understanding of this boundary line. At present, the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods, which leads to the precipitation reduction, temperature rise, human activities water usage increasement. So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change, which may pose the potential deterioration risk on the suitability of fish habitat. The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.© 2021 China Geology Editorial Office.  相似文献   

4.
Maheshwaram watershed is situated in Ranga Reddy district of Andhra Pradesh at a distance of about 30 km south of Hyderabad, capital of Andhra Pradesh. The watershed has an area of 60 km2 and has hard rock aquifers with semi-arid climate. The study area has been expanding at a fast pace and now has the distinction of being one of the fastest growing urban centers facing the problem of groundwater depletion and quality deterioration due to the absence of perennial source of surface water and also due to over exploitation. Human activities involving industrial and agricultural development and the inadequate management of land and water resources have, directly or indirectly resulted in the degradation of environment viz. water and soil. In the present study chemical analysis of groundwater samples of the study area, collected during pre- and post-monsoon seasons of 2007–2008 has been carried out. The analyzed data are utilized to characterize the hydro chemical process dominant in the area. Various classification methods such as Piper, Back and Hanshaw, Wilcox, USA. Salinity Laboratory are employed to critically study the geochemical characteristics of groundwater of the study area. Finally, principal component analysis (PCA) is also employed to the chemical variables of groundwater to characterize the hydro chemical process that is dominant in the area. In the analysis four principal components emerged as significant contributors to the groundwater quality. The total contribution of these four components is about 85–87%. The contribution of the first component is about 49–50% and has significant positive loadings of Ca2+, Mg2+, Na+, and Cl ions. The second, third, and fourth principal components have significant positive loadings of F, NO3 , SO4 2+, and HCO3 ions.  相似文献   

5.
Recently, water and soil resource competition and environmental degradation due to inadequate management practices have been increased and pose difficult problems for resource managers. Numerous watershed practices currently being implemented for runoff storage and flood control purposes have improved hydrologic conditions in watersheds and enhanced the establishment of riparian vegetation. The assessment of proposed management options increases management efficiency. The purpose of this study is to assess the impact of watershed managements on runoff storage and peak flow, and determine the land use and cover dynamics that it has induced in Gav-Darreh watershed, Kurdistan, Iran. The watershed area is 6.27 km2 which has been subjected to non-structural and structural measures. The implemented management practices and its impact on land use and cover were assessed by integrating field observation and geographic information systems (GIS). The data were used to derive the volume of retained water and determine reduction in peak flow. The hydrology of the watershed was modeled using the Hydrologic Engineering Center–Hydrologic Modeling System (HEC–HMS) model, and watershed changes were quantified through field work. Actual storms were used to calibrate and validate HEC–HMS rainfall–runoff model. The calibrated HEC–HMS model was used to simulate pre- and post-management conditions in the watershed. The results derived from field observation and HEC–HMS model showed that the practices had significant impacts on the runoff storage and peak flow reduction.  相似文献   

6.
Groundwater potential zone mapping has become easier with the inputs from Remote Sensing (RS) & Geographical Information System (GIS) techniques. Various thematic maps like geology, geomorphology, drainage density, slope, landuse/landcover etc can be easily generated through RS & GIS. The present study is aimed at generating groundwater potential map of Koshalya-Jhajhara (K-J) watershed by using integrated approach of RS & GIS. Various thematic layers have been generated and assigned weightages and ranks. These layers have been integrated in GIS software for generating Groundwater Potential Zone (GPZ) map of K-J watershed. The area falls into five categories of groundwater potential zones i.e. very good, good, moderate, poor and very Poor depending on the likelihood of availability of ground water. On the basis of this study it is found that only 5.83 km2 and 4.91 km2 area is under very good and good category of groundwater availability respectively. An area of 24.48 km2 is found under moderate category whereas dominant portion of K-J watershed i.e. 61.83 km2 and 37.87 km2 area falls under poor and very poor category of availability of groundwater respectively.  相似文献   

7.
A numerical groundwater-flow model was used to characterize the source area and volume of Phillips Branch, a baseflow-dominated stream incising a highly permeable unconfined aquifer on the low relief Delmarva Peninsula, USA. Particle-tracking analyses indicate that the source area (5.51 km2) is ~20% smaller than the topographically defined watershed (6.85 km2), and recharge entering ~37% of the surface watershed does not discharge to Phillips Branch. Groundwater residence time within the source volume ranges from a few days to almost 100 years, with 95% of the volume “flushing” within 50 years. Artificial discharge from groundwater pumping alters the shape of the source area and reduces baseflow due to the interception of stream flow paths, but has limited impacts on the residence time of groundwater discharged as baseflow. In contrast, artificial recharge from land-based wastewater disposal substantially reduces the source area, lowers the range in residence time due to the elimination of older flow paths to the stream, and leads to increased discharge to adjacent surface-water bodies. This research suggests that, in this and similar hydrogeologic settings, the “watershed” approach to water-resource management may be limited, particularly where anthropogenic stresses alter the transport of soluble contaminants through highly permeable unconfined aquifers.  相似文献   

8.
Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.  相似文献   

9.
Urbanization has accelerated rapidly over the last century, which has caused surfaces in natural ecosystems to shift to impervious surfaces. As a result, urban watershed ecosystems show altered physical, chemical and ecological process. As an important part of watershed management, urbanization has become one of the key issues involved in the deterioration of water quality. Impervious surface area (ISA) has been recognized as a key indicator of the effects of non-point runoff and water quality within a particular watershed. Numerous case studies have been conducted to investigate the relationship between urbanization and water quality in different study areas. However, there is still a lack of understanding regarding quantitative analysis of the threshold between urbanization and water quality indicators. This study was conducted to improve the understanding of how to quantify a threshold between urbanization and water quality, taking the rapid urbanization zone of Shenzhen, China as a case study. To accomplish this, ISA was extracted from the Landsat? image using a linear spectral mixture method to quantify the urbanization. The relationship between water quality indicators and ISA was then analyzed by nonlinear regression, and the threshold between ISA and the chemical indicators of water quality was investigated using the statistical segment approach method. The results indicate that the water quality indicators and ISA are significantly correlated, and that, with the exception of Zn, Pb, and CN, the water quality indicators had R 2 values greater than 0.45. Furthermore, with the exception of Zn, F?, Pb and oils, water quality indicators were found to have an ISA threshold of 36.9–52.9 %, indicating that it is important to control the ISA below 36.9 % in urbanization watersheds to enable effective urban watershed management.  相似文献   

10.
Forty-one metric tons of the mineral wollastonite (CaSiO3) was applied to an 11.8 hectare watershed at the Hubbard Brook Experimental Forest (HBEF; White Mountains, New Hampshire, USA) with the goal of restoring the Ca estimated to have been depleted from the soil exchange complex by acid deposition. This experiment provided an opportunity to gain qualitative information on whole watershed hydrologic flow paths by studying the response of stream water chemistry to the addition of Ca. Because the Ca/Sr and 87Sr/86Sr ratios of wollastonite strongly contrast that of other Ca sources in the watershed, the wollastonite-derived Ca can be identified and its amount estimated in various ecosystem components. Stream water chemistry at the HBEF varies seasonally due to shifts in the proportion of base flow and interflow. Prior to the wollastonite application, seasonal variations in 87Sr/86Sr ratios indicated that 87Sr/86Sr was higher during base flow than interflow, due largely to greater amounts of biotite weathering along deeper flow paths. After the application, Ca/Sr and 87Sr/86Sr changed markedly as the high Ca/Sr and low 87Sr/86Sr wollastonite dissolved and mixed with stream water. The Ca addition provided information on the response times of various flow paths and ion exchange processes to Ca addition in this small upland watershed. During the first year after the addition, wollastonite applied to the near stream zone dissolved and was partially immobilized by cation exchange sites in the hyporheic zone. In the second and third years after the addition we infer that much of this Ca and Sr was subsequently desorbed from the hyporheic zone and was exported from the watershed in stream flow. In the fourth through ninth years after the addition, Ca and Sr from wollastonite that had dissolved in upland soils was transported to the stream by interflow during wet periods when the ground water table was elevated. Between years three and nine the minimum annual Ca/Sr ratio (in late summer base flow) increased, providing evidence that Ca and Sr had increasingly infiltrated to the deepest flow paths. Strong seasonal variations in Ca/Sr and 87Sr/86Sr ratios of stream water resulted from the wollastonite addition to upland forest soils, and these ratios have become sensitive to changing flow paths during the annual cycle. Most notably, high flow events now produce large excursions in stream geochemistry toward the high Ca/Sr and low 87Sr/86Sr ratios of wollastonite. Nine years after the application we estimate that ∼360 kg of Ca from wollastonite has been exported from the watershed in stream flow. The rate of export of Ca from wollastonite dissolution has stabilized at about 11 kg of Ca per year, which accounts for ∼30% of the dissolved Ca in the stream water. Given that 19 metric tons of Ca were applied to the watershed, and assuming this current rate of loss, it should take over 1000 years for this added Ca to be transported from the watershed.  相似文献   

11.
Water management remains a complex task due to the multiplicity of users-consumers, which necessitates the use of planning tools and decision support in a rigorous manner. The objective of the present study is to find an alternative solution to the water use conflict applied to a scale of a hydrographic unit. Our choice focused on the Mebtouh River watershed (1306 km2), where there is a chronic water shortage. With an irrigated perimeter of 8200 ha and an urban area with a regional dimension, the hydraulic system is based on a Dam (Cheurfa) with a capacity of 83 hm3 and diversions by pumping over the river. The methodology adopted is the application of the WEAP software, with a view to constructing a water resource allocation model by 2050. The data set consists of the physical parameters of the study area, hydroclimatic records for the reference year (2015), and the estimation of urban and agricultural water demand sites. The results obtained by the WEAP model applied to our study area confirm the validation of the data used. Therefore, it is timely to develop a water resources management tool to reduce user-consumer tensions at the planned planning timeline.  相似文献   

12.
Groundwater, the most vital water resource being used for irrigation, domestic and industrial purposes is nowadays under severe threat of contamination. Groundwater contamination risk assessment is an effective tool for groundwater management. In the study, a DRASTIC model which is based on the seven hydrogeological parameters viz: depth of water, net-recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity was used to evaluate the groundwater pollution potentiality of upper Betwa watershed. ArcGIS was used to create the ground water vulnerability map by overlaying the seven layers. Based on groundwater vulnerability map, the watershed has been divided in three vulnerable zones viz; low vulnerability zone with 42.83 km2 of area, moderate with 369.21 km2 area and high having 270.96 km2 of area. Furthermore, the DRASTIC model has been validated by nitrate concentration over the area. Results of validation have shown that in low vulnerable zone, no nitrate contamination has been recorded. While in the moderate zone nitrate has been found in the range of 1.6-10ppm. However, in high vulnerable zone 11-40ppm of nitrate concentration in groundwater has been recorded, which proves that the DRASTIC model is applicable for the prediction of groundwater vulnerability in the watershed and in similar areas too.  相似文献   

13.
This study has been carried out in the granitic aquifer of Maheshwaram watershed, Telengana, India. In this study, groundwater sample data of 8 years were analyzed for the fluoride content with other chemical quality parameters. The correlation and factor analysis were employed to understand the mechanisms for fluoride (F) enrichment as well as the hydrochemistry of the area. These analyses addressed that the observed groundwater quality was due to water-rock interaction in the aquifer and fluoride is coming from the dissolution of fluorite and other silicate minerals like biotite and hornblende by the groundwater. Land use/land cover (LULC) study from 2002 to 2008 revealed there were significant positive changes in build-up land and negative changes in vegetation cover after 2003. The main agriculture (paddy) has been reduced to 0.97 km2 in 2008 from 2.39 km2 in 2003. The studied watershed has been characterized on the basis of F concentration into safe, transition, and unsafe groups following the WHO and BIS guidelines. The temporal variation of the three groups showed that 57.6% area of the watershed was in unsafe zone in 2000–2003, but 69.2% of the area became safe in 2006–2009. It has been found that F concentration reduced in 12.59% of the area (became safe from unsafe) accompanied by the reduction of paddy field area. After validation with present (2016) fluoride concentrations, it was found that 16.28% are vulnerable in near future. The results of this study showed that (a) the safe and unsafe zones of fluoride concentrations vary with time with the changes in other parameters associated with it like crop pattern and (b) vulnerable zone can be identified based on the susceptibility to change of safe and unsafe zones. Such studies are useful for planning and management purposes.  相似文献   

14.
On August 13, 2004, Hurricane Charley came ashore in the Charlotte Harbor watershed. Surface winds at the time of landfall were estimated at 130 knots. The track of the hurricane roughly followed the floodplain of the Peace River, causing massive defoliation and mortality of native vegetation and planted citrus groves, as well as substantial damage to human habitation and various infrastructure elements. Eight days after landfall, a water quality monitoring effort documented hypoxic (<2 mg I−1) to nearly anaerobic (<0.5 mg I−1) dissolved oxygen (DO) values throughout the vast majority of the Peace River's c. 6,000 km2 watershed. Low DO values appeared to be related to high values of both dissolved organic matter and suspended materials. Hypoxic conditions in Charlotte Harbor itself, occurred within 2 wk of landfall. Approximately 3 wk after the landfall of Hurricane Charley, Hurricane Frances struck the east coast of Florida, causing further wind damage and bringing substantial amounts of rain to the Charlotte Harbor watershed. Three weeks later still, Hurricane Jeanne caused similar damage to the same area. In response to the combined effects of these three hurricanes, DO values in the Peace River did not recover to pre-hurricane levels until approximately 2–3 mo later. The spatial and temporal pattern of DO fluctuations appeared to be related to the proximity of sampling locations to the path of the eyewall of the first of the three hurricanes. Within the Harbor itself, the duration of hypoxic conditions was less than that recorded within the Peace River, perhaps reflecting greater dilution of oxygen-poor waters from the watershed with less-affected water from the Gulf of Mexico.  相似文献   

15.
Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R2=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm3).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm3)and ground water boundary flow(annually 0.68 Mm3).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.  相似文献   

16.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

17.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

18.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

19.
The Nauset Marsh estuary is the most extensive (9.45 km2) and least disturbed salt marsh/estuarine system within the Cape Cod National Seashore, even though much of the 19 km2 watershed area of the estuary is developed for residential or commercial purposes. Because all of the Nauset watershed is serviced by on-site individual sewage disposal systems, there is concern over the potential impact of groundwater-derived nutrients passing from these systems to the shallow receiving waters of the estuary. The purpose of this study was to determine whether denitrification (the bacterial conversion of nitrate to gaseous nitrogen) in estuarine sediments could effectively remove the nitrate from contaminated groundwater before it passed from the watershed to the estuary. Rates of denitrification were measured both in situ and in sediment cores, in areas of active groundwater discharge, in relatively pristine locations, and in areas situated down-gradient of moderate to heavily developed regions of the watershed. Denitrification rates for 47 sediment cores taken over an annual cycle at 5 stations ranged from non-detectable to 47 μmol N2 m−2 h. Mean denitrification rates were positively correlated with sediment organic content, and varied seasonally due to changes in sediment organic content and to the effect of water temperatures on sediment oxygen penetration depths. There was no correlation between observed denitrification rates and corresponding nitrate concentrations in groundwater. A comparison of in situ denitrification rates (supported by groundwater nitrate) with denitrification rates observed in sediment cores (supported by remineralized nitrate) showed that groundwater-driven denitrification rates were small, and not in excess of denitrification rates supported by remineralized nitrate. Most of the denitrification in Nauset sediments was apparently fueled by remineralized nitrate through coupled nitrification/denitrification. Denitrification did not contribute significantly to the direct loss of nitrate from incoming groundwater at Nauset Marsh estuary. Groundwater flow was rapid, and much of it occurred in freshwater springs and seeps through very coarse, sandy, well-oxygenated sediments of limited organic content. There was little opportunity for denitrification to occur during groundwater passage through these sediments. These results have important management implications because they suggest that the majority of nitrogen from contaminated groundwater crosses the sediment/water interface and arrives at Nauset Estuary, where it is available to primary producers. Preliminary budget calculations suggest that while denitrification was not an effective mechanism for the direct removal of nitrate in contaminated groundwater flowing to Nauset Marsh estuary, it may contribute to significant nitrogen losses from the estuary itself.  相似文献   

20.
It is absolutely necessary to quantify the hydrological processes in earth surface by numerical models in the cold regions where although most Chinese large rivers acquire their headstreams, due to global warming, its glacier, permafrost and snow cover have degraded seriously in the recent 50 years. Especially in an arid inland river basin, where the main water resources come from mountainous watershed, it becomes an urgent case. However, frozen ground’s impact to water cycle is little considered in the distributed hydrological models for a watershed. Took Heihe mountainous watershed with an area of 10,009 km2, as an example, the authors designed a distributed heat-water coupled (DWHC) model by referring to SHAW and COUP. The DWHC model includes meteorological variable interception model, vegetation interception model, snow and glacier melting model, soil water-heat coupled model, evapotransporation model, runoff generation model, infiltration model and flow concentration model. With 1 km DTM grids in daily scale, the DWHC model describes the basic hydrological processes in the research watershed, with 3∼5 soil layers for each of the 18 soil types, 9 vegetation types and 11 landuse types, according to the field measurements, remote sensing data and some previous research results. The model can compute the continuous equation of heat and water flow in the soil and can estimate them continuously, by numerical methods or by some empirical formula, which depends on freezing soil status. However, the model still has some conceptual parameters, and need to be improved in the future. This paper describes only the model structure and basic equations, whereas in the next papers, the model calibration results using the data measured at meteorological stations, together with Mesoscale Model version 5 (MM5) outputs, will be further introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号