首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discontinuous deformation analysis (DDA) is a numerical approach used to simulate the post-failure behavior of a blocky assembly. Three available algorithms incorporate seismic impacts into DDA simulations for earthquake-induced slope failure. The following methods are used: directly applying time-dependent accelerations to falling/sliding blocks (Method 1); adding time-dependent accelerations to base block (Method 2); and time-dependently constraining seismic displacements of the base block (Method 3). However, incorrect absolute movements of falling/sliding and base blocks were obtained using Method 1. Additionally, relative movements between falling/sliding blocks and the base block are opposite to those simulated by the other two algorithms—Methods 2 and 3. Since locating an earthquake-induced landslide before an earthquake is extremely difficult, the seismic movements of base rock are recorded. Method 1 applies recorded seismic data to sliding blocks in conflict with d’Alembert’s principle of mechanics. Additionally, in Method 2, when the computation time step must be longer than the time in seismic data, computational results reveal abnormal base block displacements due to the non-zero velocity recorded at the end time of seismic data in seismic DDA. In this study, a novel algorithm to diminish the velocity of the base rock in the seismic analysis is utilized to modify Method 2. Furthermore, this work confirms that DDA with the modified Methods 2 and 3 is a practical approach for earthquake-induced landslide simulations.  相似文献   

2.

To understand the serviceability aspects of seawalls, it is essential to study the permanent displacements of seawalls that occur during the earthquakes. Studies in the existing literature have concentrated on displacements of retaining walls with dry backfills; to the authors’ observation there is no specific analytical investigation devoted to the earthquake-induced displacements of retaining walls with submerged backfills. This paper focuses on sliding displacements of gravity type seawall retaining a submerged backfill under active earth pressure condition during the earthquakes. The threshold seismic acceleration coefficients required for initiation of sliding and the amount of sliding displacement due to seismic loading are calculated by adopting Newmark’s sliding block method. One of the prime features of the study is the estimation of seismic inertia forces in the submerged soil and wall applying the modified pseudo-dynamic method. The comparison of the results obtained using the proposed analytical formulation with the existing literature found to be in good agreement. A comprehensive parametric study has been conducted to understand the effects of different parameters such as seismic horizontal and vertical acceleration coefficients, soil and wall friction angles, width of the wall, wall inclination and excess pore water pressure ratio.

  相似文献   

3.
Disk clusters are developed to represent the shape of granular materials more precisely (compared to circular particles) and to minimise excessive rolling. Investigating the behaviour of dynamic disk-based discontinuous deformation analysis (DDA) with disk clusters is very important to evaluate the applicability of disk-based DDA to dynamic problems in geomechanics. In this paper, the accuracy of disk-based DDA under dynamic conditions is studied by a comprehensive sensitivity analysis. The results obtained by disk-based DDA are compared with the analytical solutions of a disk cluster on an incline subjected to gravitational force only, and three different accelerations of increasing complexity with sinusoidal input functions as well as gravitational load. In this research, the effects of time step size and interface friction angles on the results are studied. Overall, most of the error for both velocity and displacement occurs at the beginning of the solution. With increasing friction angle, the initial perturbation of the solution increases in the case of sliding under gravitational force only, and decreases in the case of sliding under dynamic loads. This study shows that disk-based DDA predicts accurately the velocities and displacements derived with respect to the frictional resistance offered by the inclines.  相似文献   

4.
Nodal-based three-dimensional discontinuous deformation analysis (3-D DDA)   总被引:2,自引:0,他引:2  
This paper presents a new numerical model that can add a finite element mesh into each block of the three-dimensional discontinuous deformation analysis (3-D DDA), originally developed by Gen-hua Shi. The main objectives of this research are to enhance DDA block’s deformability. Formulations of stiffness and force matrices in 3-D DDA with conventional Trilinear (8-node) and Serendipity (20-node) hexahedral isoparametric finite elements meshed block system due to elastic stress, initial stress, point load, body force, displacement constraints, inertia force, normal and shear contact forces are derived in detail for program coding. The program code for the Trilinear and Serendipity hexahedron elements have been developed, and it has been applied to some examples to show the advantages achieved when finite element is associated with 3-D DDA to handle problems under large displacements and deformations. Results calculated for the same models by use of the original 3-D DDA are far from the theoretical solutions while the results of new numerical model are quite good in agreement with theoretical solutions; however, for the Trilinear elements, more number of elements are needed.  相似文献   

5.
ABSTRACT

A simplified approach is presented for estimating permanent displacements in slopes as a result of both vertical and horizontal seismic accelerations. A study of 52 earthquake records showed that the time difference between maximum horizontal and vertical accelerations varied between 0 and 10.3 s. The approach is illustrated for an earth dam embankment by analysing the effects of five of the above earthquake records. The approach combines a pseudo-static slope stability analysis for estimation of the critical (or yield) horizontal-vertical acceleration combinations, and a Newmark type displacement analysis. Guidelines are presented for conservative choice of soil strength parameters of saturated clays for use in the stability analysis. While permanent displacements of up to 40 cm were predicted without considering the vertical acceleration component, no additional displacement above 3.5 cm resulted when this component was included. The predicted additional displacement was consistently less than 10%, and in 50% of the analyses, vertical acceleration led to smaller predicted displacements. The simple approach may be applied in analysis for any slope using real earthquake records. Using existing, empirical expressions for permanent displacement, based only on horizontal accelerations, the effect of the vertical accelerations may be conservatively estimated by increasing the displacement by 10%.  相似文献   

6.
巩师林  凌道盛  胡成宝  钮家军 《岩土力学》2020,41(11):3810-3822
原有非连续变形分析(DDA)采用一阶近似后的位移增量表达式更新块体构形,推导相关子矩阵,且对不同时步计算出的应变增量直接叠加,当模拟的块体发生大转动时往往会产生较大误差。为考虑块体转动与变形的耦合作用,引入先变形、后转动的块体位移增量表达式。重新推导了惯性力子矩阵,将块体转动时的离心力与科氏力加到荷载矩阵中。计算时对应变分量及其相关变量进行坐标变换与修正,并采用新引入的位移增量表达式计算块体顶点位移,进行后接触修正与更新块体构形。数值算例表明,改进后的程序能够消除转动带来的误差,自动考虑了块体转动时离心力和科氏力引起的变形,应变计算精度更高。改进方法克服了块体体积自由膨胀、应变场畸变等问题,给出了合理的块体应变。  相似文献   

7.
充分考虑振动台实验揭示出来的基本地震滑坡单元体震动滑移特征,总结得到其永久位移的估算方法:(1)考虑地震动惯性力和重力的联合作用,计算相应向上和向下滑移的屈服加速度,以反应其可能向上和向下滑移的行为;(2)在适度简化斜坡岩土体动力学模型的基础上,考虑斜坡岩土体自振特性和滑体所在高度对地震波的放大效应,得到滑体附近的局部地震加速度;(3)考虑滑体附近局部加速度和滑移屈服加速度的控制作用,计算每一地震波的周期内滑体相对滑床所能达到的最大滑移速度(向上和向下),进而得到相对动能;(4)考虑到滑体的动能基本耗散在滑带上,基于能量守恒原理,将相对动能除以滑带上的摩擦力,即可估算出每一周期内的永久位移;(5)将每一地震波周期内产生的永久位移相累加,即可得到总体的滑动位移。经与实验结果对比,本估算方法具有较高的精度与可靠性,虽只考虑了水平向地震动作用的影响,但对于存在竖向地震动的情况,其思路同样适用,只是需要计入竖向地震动惯性作用力的影响。  相似文献   

8.
This paper presents the closed‐form solutions for the elastic fields in two bonded rocks induced by rectangular loadings. Each of the two bonded rocks behaves as a transversely isotropic linear elastic solid of semi‐infinite extent. They are completely bonded together at a horizontal surface. The rectangular loadings are body forces along either vertical or horizontal directions and are uniformly applied on a rectangular area. The rectangular area is embedded in the two bonded rocks and is parallel to the horizontal interface. The classical integral transforms are used in the solution formulation, and the elastic solutions are expressed in the forms of elementary harmonic functions for the rectangular loadings. The stresses and displacements in the rocks induced by both the horizontal and vertical body forces are also presented. The numerical results illustrate the important effect of the anisotropic bimaterial properties on the stress and displacement fields. The solutions can be easily implemented for numerical calculations and applied to problems encountered in rock mechanics and engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A method enabling assessment of seismic-induced movements of gravity block is proposed. This method is based on dynamic analysis of the block subjected to both horizontal and vertical ground accelerations, and resultant forces acting on the block. There are two kinds of the motion. The first one is trivial, as it is a common motion of the block and subsoil. The second is a relative motion of the block with respect to subsoil, depending on combination of ground accelerations and the resultant of horizontal forces. Attention is focused on the influence of vertical ground motion on seismic-induced displacements of the structure. Experimental investigations performed in order to validate a numerical algorithm are described, and then experimental data are compared with numerical predictions. A good agreement is obtained. Then, the dynamics analysis of the block is presented for harmonic and pseudo-stochastic ground motions in order to illustrate the algorithm proposed. The results of computations show that, for some typical data and ground accelerations corresponding to strong earthquakes, large permanent displacements of the block take place, as observed in real conditions.  相似文献   

10.
Failure of several gravity retaining walls in residential areas built on reclaimed land, during the October 23, 2004 Chuetsu earthquake in Niigata Prefecture, Japan, determined the authorities to consider the seismic retrofit of the walls in order to mitigate future similar disasters in the urban environment. This study addresses the effectiveness of ground anchors in improving the seismic performance of such retaining structures through a sliding block analysis of the seismic response of an anchored gravity retaining wall supporting a dry homogeneous fill slope subject to horizontal ground shaking. Sliding failure along the base of the wall and translational failure along a planar slip surface of the active wedge within the fill material behind the wall were considered in the formulation, whereas the anchor load was taken as a line load acting on the face of the gravity retaining wall. The effects of magnitude and orientation of anchor load on the yield acceleration of the wall-backfill system and seismically induced wall displacements were examined. It was found that for the same anchor orientation, the yield acceleration increases in a quasi-linear manner with increasing the anchor load, whereas an anchor load of a given magnitude acting at various orientations produces essentially identical yield accelerations. On the other hand, the computed earthquake-induced permanent displacements of the anchored gravity retaining wall decrease exponentially with increasing magnitude of anchor load. Additionally, the influence of backfill strength properties (e.g., internal friction angle) on the seismic wall displacement appears to diminish considerably for the anchored gravity retaining wall. A dynamic displacement analysis conducted for the anchored gravity retaining wall subjected to various seismic waveforms scaled to the same peak earthquake acceleration revealed a good correlation between the calculated permanent wall displacements and the Arias intensity parameter characterizing the input accelerogram.  相似文献   

11.
Seismically induced landslide displacements: a predictive model   总被引:27,自引:0,他引:27  
Roberto Romeo   《Engineering Geology》2000,58(3-4):337-351
Newmark's model for predicting earthquake-induced landslide displacements provides a simple way to predict the coseismic displacements affecting a sliding mass subject to earthquake loading. In this model, seismic slope stability is measured in terms of critical acceleration, which depends on the mechanical soil properties, pore-pressure distribution, and slope geometry. The triggering seismic forces are investigated in terms of energy radiation from the source, propagation, and site effects, based on 190 accelerometric recordings from 17 Italian earthquakes with magnitudes between 4.5 and 6.8. The method is based on the calibration of relations having the general form of an attenuation law that relates the energy of the seismic forces to the dynamic shear resistances of the sliding mass to propagate the expected landslide displacements as an inverse function of the distance from the fault rupture; the amount of displacement computed through these relations provides a criterion to predict the occurrence of slope failures. Finally, maps showing, in a deterministic and a probabilistic way, the potential of seismically induced landslide displacements are displayed as a tool to provide seismic landslide scenarios and earthquake-induced landslide hazard maps, respectively.  相似文献   

12.
地震效应和坡顶超载对均质土坡稳定性影响的拟静力分析   总被引:3,自引:0,他引:3  
罗强  赵炼恒  李亮  谭捍华 《岩土力学》2010,31(12):3835-3841
基于强度折减技术和极限分析上限定理,假定机动容许的速度场破坏面,考虑坡顶超载、水平和竖向地震效应影响推导了边坡稳定性安全系数的计算表达式。采用序列二次规划迭代方法(和内点迭代方法)对边坡安全系数目标函数进行能量耗散最小化意义上的优化计算,与多个算例的对比验证了其方法和程序计算的正确性;对影响土质边坡动态稳定性的一些因素进行了参数分析,分析表明:随着边坡倾角?、坡顶超载q、水平和竖向地震效应影响系数的增大,边坡稳定性安全系数显著下降;随着坡顶超载q、水平地震效应影响系数kh的增大、竖向地震效应影响系数kv的减小,边坡的潜在滑动面越来越深,潜在破坏范围越来越大。竖向地震效应对边坡稳定性也有一定影响,强震条件下的设计计算必须考虑竖向地震效应的影响。  相似文献   

13.
Updating the block configuration on the basis of additive decomposition and its linearized expression of the displacement increment leads to the low calculation accuracy of the original discontinuous deformation analysis (DDA) and false volume expansion. In this study, the displacement expressions of a small deformation, a large rotation, and the corresponding velocity and acceleration terms on the basis of the initial configuration are presented using multiplicative decomposition. With the use of the principle of virtual work, the stiffness matrix, mass matrix, and force vector of blocks are obtained. Compared with the original DDA, each of the block deformation parameters has obvious physical meaning as a parameter of mechanics, which can be obtained by adding the incremental deformation components of each time step directly without co-ordinate transformation. Moreover, the proposed modification automatically considers the block deformation produced by centrifugal and Coriolis forces. The analysis of some typical numerical examples have verified the accuracy of the strain and stress calculated by the proposed method, and the current configuration is updated by the total displacements, which completely overcomes the false volume expansion and provides reasonable linear strains.  相似文献   

14.
块状岩体边坡地震滑动位移分析   总被引:13,自引:3,他引:13  
岩体边坡在强震作用下往往会产生滑动残余位移。这种位移是边坡稳定性评价的重要参量。本文利用块体动力学原理推导出层状和块状岩体边坡地震滑动位移微分方程式, 并编制了相应的计算程序, 给出了实例的计算结果。  相似文献   

15.
Predictive displacement-based methods provide a useful index of the seismic performance of earth dams and embankments and can be used in preliminary assessments of these structures. In practice, simplified Newmark-type sliding block methods are commonly used for this purpose. Using a database of 122 previously published case histories of permanent deformations of earth dams and embankments, the performance of six simplified sliding block models was examined. The results show that all six simplified methods underpredict seismic displacement for many of the embankment and earth dam cases that were examined, sometimes by a significant amount. An empirical correlation was developed by performing linear multiple regression analysis utilizing multiple slope and ground motion input parameters. This approach is believed to more properly reflect strong ground motion characteristics than the use of a single ground motion parameter such as the peak ground acceleration, the approach that has been previously employed in other correlations of this type. After exploring numerous functional forms, the final resulting seismic displacement correlation that was proposed was determined to be a function of the critical acceleration, the critical acceleration ratio, the slope height, the peak ground acceleration, the peak ground velocity, the spectral acceleration, and the predominant period of earthquake shaking. The proposed empirical equation yields better correlation with the case history database than does other existing empirical correlations or simplified sliding block models.  相似文献   

16.
桩板式抗滑挡墙地震响应的振动台试验研究   总被引:2,自引:0,他引:2  
曲宏略  张建经 《岩土力学》2013,34(3):743-750
汶川地震路基震害调查表明,在顺层或堆积体边坡中的桩板式抗滑挡墙具有良好的抗震性能。为了更好地了解该结构的抗震性能和优化抗震设计方法,以大型振动台模型试验为手段对其进行研究。为明确地震作用下桩板式抗滑挡墙的地震响应特性,试验采用缩尺的卧龙台站实测地震波对模型激励。试验结果揭示了土压力沿桩身分布规律、桩体位移和边坡岩土体加速度的地震响应特征。研究表明,地震土压力沿桩身呈非线性分布,竖向地震荷载对水平加速度有放大效果。所以,双向加载时的地震土压力比水平单向加载时大,但二者差距在地震基本烈度VII、VIII度区域不显著。滑坡推力、滑床对桩的土体抗力和桩身位移均与输入地震动峰值加速度成正比,即随着地震动峰值加速度的增加,加速度放大比增大;滑动面材料剪切强度折减,滑坡推力、土体抗力和抗身位移均增大,且增大速率加快。此外,结合试验成果,建议了桩板式抗滑挡墙设计时地震综合影响系数Cz的合理取值,对应地震基本烈度VII、VIII、IX度区分别为0.2、0.35、0.4。试验结果有助于揭示该结构抗震机制,也为其抗震设计提供了可靠依据。  相似文献   

17.
A failed slope may not necessarily require a remedial treatment if it can be shown with confidence that the maximum movement of the slide mass will be within tolerable limits, i.e., not cause loss of life or property. A permanent displacement analysis of a landslide for static and seismic conditions is presented using a continuum mechanics approach. Computed values of displacement for static conditions compare favorably with field measurements and computed values of seismic displacements for a postulated earthquake motion appear reasonable. Also, the seismic displacements using the continuum mechanics approach compare favorably with those obtained using the Newmark sliding block procedure for assessing seismically-induced slope deformations.  相似文献   

18.
A Boundary Element based Discontinuous Deformation Analysis (BE‐DDA) method is developed by implementing the improved dual reciprocity boundary element method into the open close iterations based DDA. This newly developed BE‐DDA is capable of simulating both the deformation and movement of blocks in a blocky system. Based on geometry updating, it adopts an incremental dynamic formulation taking into consideration initial stresses and dealing with external concentrated and contact forces conveniently. The boundaries of each block in the discrete blocky system are discretized with boundary elements while the domain of each block is divided into internal cells only for the integration of the domain integral of the initial stress term. The contact forces among blocks are treated as concentrated forces and the open–close iterations are applied to ensure the computational accuracy of block interactions. In the current method, an implicit time integration scheme is adopted for numerical stability. Three examples are used to show the effectiveness of the algorithm in simulating block movement, sliding, deformation and interaction of blocks. At last, block toppling and tunnel stability examples are conducted to demonstrate that the BE‐DDA is applicable for simulation of blocky systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
邬爱清  冯细霞  卢波 《岩土力学》2015,36(3):891-897
非连续变形分析(DDA)是一种隐式求解的动力学计算方法,且采用在块体界面加减刚硬弹簧的方式来满足块体界面无张拉和无嵌入的接触准则,其中时间步长和弹簧刚度两个物理量的取值直接影响DDA的计算结果。基于对DDA时间步和弹簧刚度在程序运行过程中的调整策略和块体接触的简化力学概念模型,研究了惯性力在DDA收敛求解中的作用过程。采用数值模拟试验对自由落体和斜面单滑块模型在3种力学状态下的相关力学问题进行了数值模拟研究,通过对自由落体运动的模拟,研究了时间步长单一因素对计算结果的影响规律,并初步确定了时间步长的合理取值区间。在此基础上,采用斜面单滑块模型,研究了时间步长和弹簧刚度对计算结果的共同影响,确定了不同时间步长条件下弹簧刚度的合理取值区间。研究成果表明,合适的时间步长和弹簧刚度的取值组合构成一个单连通参数取值域,当时间步和弹簧刚度的取值组合位于此“域”范围内时,DDA的计算结果是合理的。  相似文献   

20.
徐鹏  蒋关鲁  雷涛  刘琪  王智猛  刘勇 《岩土力学》2019,40(5):1841-1846
加筋土挡墙在地震荷载作用下的位移大小对结构的抗震性能影响显著。为了计算地震荷载作用下加筋土挡墙的位移,Newmark滑块法通常被用于设计中。由于传统的Newmark滑块法在计算中忽略了填土强度的变化,因而采用单一峰值或残余强度的计算将可能导致计算得到的位移小于或大于实际位移值。在二楔块破坏模式的假定条件下,根据楔块的力学平衡条件,建立了加筋土挡墙滑动安全系数计算式,同时通过引入位移阈值考虑了填土的应变软化特点。通过将计算结果与模型试验结果对比,得到以下结论:相较于单楔块法,二楔块法更能真实地反映出墙体的实际破坏模式,且计算得到的屈服加速度系数更接近试验值;相较于采用单一峰值或残余强度计算的位移,考虑填土应变软化的计算解更接近于模型测试值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号