首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

2.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

3.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

4.
The dependence of iron and europium partitioning between plagioclase and melt on oxygen fugacity was studied in the system SiO2(Qz)—NaAlSi3O8(Ab)—CaAl2Si2O8(An)—H2O. Experiments were performed at 500 MPa and 850 °C/750 °C under water saturated conditions. The oxygen fugacity was varied in the log f O2-range from −7.27 to −15.78. To work at the most reducing conditions the classical double-capsule technique was modified. The sample and a C—O—H bearing sensor capsule were placed next to each other within a BN jacket to minimise loss of hydrogen to the vessel atmosphere. By this setup redox conditions slightly more reducing than the FeO—Fe3O4 buffer could be maintained even in 96 h runs. Raman spectra showed that the BN was modified by reaction with hydrogen resulting in a low hydrogen permeability. The partition coefficients determined for Eu at 850 °C and 500 MPa vary from 0.095 at conditions of the Cu—Cu2O buffer to 1.81 at the most reducing conditions (C—O—H sensor). In the same f O2 interval the partition coefficient for Fe varies from 0.55 at oxidising conditions to 0.08 at the most reducing conditions. The partitioning of Sm, which was added as a reference for a trivalent REE, does not vary with the oxygen fugacity, yielding an average value for D = 0.07. Lowering the temperature to 750 °C for a given f O2 decreases the partition coefficient of Eu and increases that of Fe. Comparison with published data at 1 atm and at higher temperatures shows that both temperature and composition of the melt have strong effects on the partitioning behaviour. As the change of the partition coefficients in the geologically relevant f O2 range is quite strong, element partitioning of Eu and Fe might be used to estimate redox conditions for the genesis of igneous rocks. Furthermore, by modelling the partitioning data it is possible to extract information about the redox state of the melt. Resulting ferric-ferrous ratios show significant differences from those predicted by empirical models. Received: 14 October 1998 / Received: 5 March 1999  相似文献   

5.
 The partitioning of Fe and Mg between the M1 and M2 octahedral sites of olivine has been investigated by in situ time-of-flight neutron powder diffraction. The degree of M-cation order was determined from direct measurements of site occupancies in a synthetic sample of Fo50Fa50 heated to 1250 °C at the Fe-FeO oxygen buffer. Fe shows slight preference for M1 at temperatures below about 600 °C, progressively disordering on heating to this temperature. Above 630 °C, the temperature at which site preferences cross over (T cr), Fe preferentially occupies M2, becoming progressively more ordered into M2 on increasing temperature. The cation-ordering behaviour is discussed in relation to the temperature dependence of the M1 and M2 site geometries, and it is suggested that vibrational entropy, crystal field effects and changes in bond characteristics play a part in the cross-over of partitioning behaviour. The temperature dependence of site ordering is modelled using a Landau expansion of the free energy of ordering of the type ΔG = −hQ + gTQ +  (T − T c)Q 2 +  Q 4, with a/h = 0.00406 K−1, b/h = 2.3, T c = 572 K and g/h = 0.00106 K−1. These results suggest that the high-temperature ordering behaviour across the forsterite-fayalite join will have a bearing on the activity-composition relations of this important rock-forming mineral, and indicate that Fe-Mg olivine solid solutions become less ideal as temperature increases. Received: 12 August 1999 / Accepted: 25 April 2000  相似文献   

6.
 The cation distribution of Co, Ni, and Zn between the M1 and M2 sites of a synthetic olivine was determined with a single-crystal diffraction method. The crystal data are (Co0.377Ni0.396Zn0.227)2SiO4, M r  = 212.692, orthorhombic, Pbnm, a = 475.64(3), b = 1022.83(8), and c = 596.96(6) pm, V = 0.2904(1) nm3, Z = 4, D x  = 4.864 g cm−3, and F(0 0 0) = 408.62. Lattice, positional, and thermal parameters were determined with MoKα radiation; R = 0.025 for 1487 symmetry-independent reflections with F > 4σ(F). The site occupancies of Co, Ni, and Zn were determined with synchrotron radiation employing the anomalous dispersion effect of Co and Ni. The synchrotron radiation data include two sets of intensity data collected at 161.57 and 149.81 pm, which are about 1 pm longer than Co and Ni absorption edges, respectively. The R value was 0.022 for Co K edge data with 174 independent reflections, and 0.034 for Ni K edge data with 169 reflections. The occupancies are 0.334Co + 0.539Ni + 0.127Zn in the M1 sites, and 0.420Co + 0.253Ni + 0.327Zn in the M2 sites. The compilation of the cation distributions in olivines shows that the distributions depend on ionic radii and electronegativities of constituent cations, and that the partition coefficient can be estimated from the equation: ln [(A/B)M1/(A/B)M2] = −0.272 (IR A -IR B ) + 3.65 (EN A EN B ), where IR (pm) and EN are ionic radius and electronegativity, respectively. Received: 8 April 1999 / Revised, accepted: 7 September 1999  相似文献   

7.
 The monoclinic titanite-like high-pressure form of calcium disilicate has been synthesized and quenched to ambient conditions to form the triclinic low-pressure phase containing silicon in four-, five- and sixfold coordination. The enthalpy of formation of the quench product has been measured by high-temperature oxide melt calorimetry. The value obtained from samples from a series of several synthesis experiments is ΔH f = (−26.32 ± 4.27) kJ mol−1 for the formation from the component oxides, or ΔH f  = (−2482.81 ± 4.59) kJ mol−1 for the formation from the elements. The result is identical within experimental error to available estimates, although the previously predicted energy difference between the monoclinic and triclinic phases could not be verified. Received: 16 February 2000 / Accepted: 14 July 2000  相似文献   

8.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   

9.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   

10.
Attenuation of photosynthetically available radiation (PAR) measured using a light meter, was related to Secchi disk, horizontal black disk and horizontal sighting ranges observed in a coastal lagoon of the Southern California Current System. Vertical attenuation coefficient (KPAR) was calculated from radiometric PAR profiles. Vertical (ZD) and horizontal (HS) sighting ranges were measured with white (Secchi depth or ZSD, HS W ) and black (Z BD, HS B ) targets. Empirical power models for the KPAR-ZSD (KPAR=1.47 ZSD −1.13), KPAR-Z BD (KPAR=0.98 Z BD −1.26), KPAR-HS W (KPAR=1.22 HS W −1.14) and KPAR-HS B (KPAR=0.73 HS B −1.07) relationships were developed. The parameters of these models may not apply to other water bodies because their values depend on the range of water reflectance in each case, as reported in the literature. This is the first contribution reporting KPAR-HS empirical relations in an estuarine environment but their application may be limited to this coastal lagoon. While this approach may be universal, more data are needed to explore the variability of the parameters between different water bodies.  相似文献   

11.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

12.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   

13.
Summary Kristiansenite occurs as a late hydrothermal mineral in vugs in an amazonite pegmatite at Heftetjern, T?rdal, Telemark, Norway. Tapering crystals, rarely up to 2 mm long, are colourless, white, or slightly yellowish. The mineral has the ideal composition Ca2ScSn(Si2O7)(Si2O6OH) and is triclinic C1 with cell parameters a = 10.028(1), b = 8.408(1), c = 13.339(2) ?, α = 90.01(1), β = 109.10(1), γ = 90.00(1)°, V = 1062.7(3) ?3 (Z = 4). It has a monoclinic cell within ∼ 0.1 ? and is polysynthetically twinned on {010} by metric merohedry. The strongest reflections in the X-ray powder pattern are [d in ?, (I obs), (hkl)]: 5.18 (53) (1–11), 3.146 (100) (004), 3.089 (63) (−222), 2.901 (19) (221), 2.595 (34) (222), 2.142 (17) (−3–31). The Mohs’ hardness is 5?–6; Dcalc. = 3.64 g/cm3; only a mean refractive index of 1.74 could be measured. Scandium enrichment in the Heftetjern pegmatite and the crystal chemistry of scandium are briefly discussed. Received April 30, 2001; accepted July 28, 2001  相似文献   

14.
The unit cell parameters, extracted from Rietveld analysis of neutron powder diffraction data collected between 4.2 K and 320 K, have been used to calculate the temperature evolution of the thermal expansion tensor for gypsum for 50 ≤ T ≤ 320 K. At 300 K the magnitudes of the principal axes are α 11  = 1.2(6) × 10−6 K−1, α 22  = 36.82(1) × 10−6 K−1 and α 33  = 25.1(5) × 10−6 K−1. The maximum axis, α 22 , is parallel to b, and using Institution of Radio Engineers (IRE) convention for the tensor orthonormal basis, the axes α 11 and α 33 have directions equal to (−0.979, 0, 0.201) and (0.201, 0, 0.979) respectively. The orientation and temperature dependent behaviour of the thermal expansion tensor is related to the crystal structure in the I2/a setting. Received 12 February 1998 / Revised, accepted 19 October 1998  相似文献   

15.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

16.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

17.
Summary The complexation of aluminium(III) and silicon(IV) was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25 °C. The measurements were performed as potentiometric titrations using a hydrogen electrode with OH ions being generated coulometrically. The total concentrations of Si(IV) and Al(III) respectively [Si tot ] and [Al t ot], and −log[H +] were varied within the limits 0.3 < [Si tot ] < 2.5 mM, 0.5 < [Al tot ] < 2.6 mM, and 2 ≤ -log[H +] ≤ 4.2. Within these ranges of concentration, evidence is given for the formation of an AlSiO(OH) 3 2+ complex with a formation constant log β1,1-1 = −2.75 ± 0.1 defined by the reaction Al 3++Si (OH)4AlOSi(OH) 3 2+ +H + An extrapolation of this value to I=0 gives log β1,1-1 = −2.30. The calculated value of logK (Al 3++SiO(OH) 3 AlOSi(OH) 3 2+ ) = 6.72 (I=0.6 M) can be compared with corresponding constants for the formation of AlF 2+ and AlOH 2+ , which are equal to 6.16 and 8.20. Obviously, the stability of these Al(III) complexes decreases within the series OH >SiO(OH) 3  > F   相似文献   

18.
The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.  相似文献   

19.
Submersed aquatic vegetation (SAV) is an important component of shallow water estuarine systems that has declined drastically in recent decades. SAV has particularly high light requirements, and losses of SAV have, in many cases, been attributed to increased light attenuation in the water column, frequently due to coastal eutrophication. The desire to restore these valuable habitats to their historical levels has created the need for a simple but accurate management tool for translating light requirements into water quality targets capable of supporting SAV communities. A procedure for calculating water quality targets for concentrations of chlorophyll and total suspended solids (TSS) is derived, based on representing the diffuse attenuation coefficient for photosynthetically active radiation, Kd(PAR), as a linear function of contributions due to water plus colored dissolved organic matter (CDOM), chlorophyll, and TSS. It is assumed that Kd(PAR) conforms to the Lambert-Beer law. Target concentrations are determined as the intersection of a line representing intended reduction of TSS and chlorophyll by management actions, with another line describing the dependence of TSS on chlorophyll at a constant value of Kd(PAR). The validity of applying the Lambert-Beer law to Kd(PAR) in estuarine waters was tested by comparing the performance of a linear model of Kd(PAR) with data simulated using a more realistic model of light attenuation. The linear regression model tended to underestimate Kd(PAR) at high light attenuation, resulting in erroneous predictions of target concentrations at shallow restoration depths. The errors result more from the wide spectral bandwidth of PAR, than from irrecoverable nonlinearities in the diffuse attenuation coefficient per se. In spite of the failure of the Lambert-Beer law applied to Kd(PAR), the variation of TSS with chlorophyll at constant Kd(PAR) determined by the more mechanistic attenuation model was, nevertheless, highly linear. Use of the management tool based on intersecting lines is still possible, but coefficients in the line describing the dependence of TSS on chlorophyll at constant Kd(PAR) must be determined empirically by application of an optical model suitably calibrated for the region of interest. An example application of the procedure to data from the Rhode River, Maryland, indicates that approximately 15% reduction in both TSS and chlorophyll concentrations, or 50% reduction in chlorophyll alone, will be needed to restore conditions for growth of SAV to levels that existed in the late 1960s.  相似文献   

20.
The heat capacity of synthetic, stoichiometric wadeite-type K2Si4O9 has been measured by DSC in the 195≤T(K)≤598 range. Near the upper temperature limit of our data, the heat capacity observed by DSC agrees with that reported by Geisinger et al. (1987) based on a vibrational model of their infrared and Raman spectroscopic data. However, with decreasing temperature, the Cp observed by DSC is progressively higher than that predicted from the vibrational model, suggesting that the standard entropy of K2Si4O9 is likely to be larger than 198.9 ± 4.0 J/K · mol computed from the spectroscopic data. A fit to the DSC data gave: Cp(T) = 499.13 (±1.87) − 4.35014 · 103(±3.489 · 101) · T −0.5, with T in K and average absolute percent deviation of 0.37%. The room-temperature compressibilities of kalsilite and leucite, hitherto unknown, have been measured as well. The data, fitted to the Murnaghan equation of state, gave K o = 58.6 GPa, K o  = 0.1 for kalsilite and K o = 45 GPa, K o  = 5.7 for α-leucite. Apart from the above mentioned data on the properties of the individual phases, we have also obtained reaction-reversals on four equilibria in the system K2O-Al2O3-SiO2. The Bayesian method has been used simultaneously to process the properties of 13 phases and 15 reactions between them to derive an internally consistent thermodynamic dataset for the K2O-Al2O3-SiO2 ternary. The enthalpy of formation of K2Si4O9 wadeite is in perfect agreement with its revised calorimetric value, the standard entropy is 232.1 ± 10.4 J/K · mol, ∼15% higher than that implied by vibrational modeling. The phase diagram, generated from our internally consistent thermodynamic dataset, shows that for all probable P-T trajectories in the subduction regime, the stable pressure-induced decomposition of K-feldspar will produce coesite + kalsilite rather than coesite + kyanite + K2Si4O9 (cf. Urakawa et al. 1994). Received: 11 June 1997 / Accepted: 2 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号