首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-preserved tufa deposits exhibit a diversity of field fabrics along the major structural feature in Gafsa area and extent between Jebel El Mida in the southeast and Sidi Ahmed Zarrouk and Jebel Ben Younes in northwest. The deposition history of the tufa is defined by three major stages; the first occurred in a perched springline or slope system with dominance of the autochthonous facies (stromatolitic tufa facies, i.e. boundstone sheets of micrite and peloids, and phytoherm framestone facies) in the proximal zone and microdetrital tufa in distal sites. The second stage occurred in a mixture of perched springline and poorly drained paludal environments that characterized by the abundance of allochems and chalk and marl. The third deposition stage occurred in a mixture of paludal and braided fluviatile environments with allochthonous tufa facies (oncoidal cyanolith tufa facies, phytoclast tufa facies and lithoclast and intraclast tufa facies). Tufas are of particular interest since their occurrences are linked to tectonic activity and extensional fault systems. Gafsa strike-slip fault, in addition to its tectonic role in creating fluid paths to the surface through flowing springs, it acts as a major regional sill that controlled paleoflow directions, discharge locations, volume, rate and fluctuations of the water supply. Tufa cessation could be explained by increasing aridity during late Holocene and subsequent reduced rainfall, increased evaporation and water table falling, which reduce the amount of recharge and its subsequent dissolution in the recharge area.  相似文献   

2.
Sedimentary Characteristics of the Cretaceous in the Songliao Basin   总被引:2,自引:0,他引:2  
The rupture of the lithosphere in Late Jurassic brought about the eruption of basaltic magma in the Songliao Basin. The evolution of the basin in Cretaceous progressed through six stages: pre-rift doming, extensional fracturing, fault subsidence, fault downwarping, downwarping and shringkage, resulting in the deposition of terrstrial facies nearly 10,000 m thick. There are different depositional sequences in these stages: the depositional period of the Early Cretaceous Shahezi and Yincheng Formations is the development stage of the down-faulted basin, forming a volcanic rock-alluvial fan-fan delta-lacustrine (intercalated with episodic turbidites)-swamp facies sequences; the period of the Early Cretaceous Dengluku Formation is the transformation stage of fault subsidence into fault downwarping of the basin, forming a sequence mainly of alluvial plain-lacustrine facies; the depositional period of the Early Cretaceous Quantou Formation-Late Cretaceous Nenjiang Formation is the downwarping stage of the basin, forming an alluvial plain-delta-lacustrine facies sequence; the period of the Late Cretaceous Sifangtai Formation-Mingshui Formation is the shringkage stage of the basin, forming again a sequence mainly of alluvial plain-alluvial fan and small relict lacustrine facies. These vertical depositional sequences fully display the sedimentary characteristics of a failed continental rift basin. Many facts indicate that the two large-scale lake invasions, synchronous with the global rise of sea level, which took place in the downwarping stage of the basin development, led to the connection between the lake and sea.  相似文献   

3.
The Mida plain, which is part of the North Gabès region (southern Tunisia), is characterized by the deep sandy units of the ‘Continental intercalaire’ (CI) or the limestone of the Lower Senonian. A geophysical survey, by electrical sounding (ES), was undertaken in the studied region to better characterize the deep geological structure of this plain and therefore its aquifer resources potential. The analysis of the results shows that the prospected zone is characterized by the succession of several levels with contrasted resistivities, which are often affected by faults. Among these observed geoelectrical levels, the highly conductor one could host a saline aquifer. Another geoelectrical level corresponding to the resistant bedrock detected at Oudhref horst can contain better-quality water than that of the aquifer detected in the El Mida Graben. In this work, we tried to explain the origin of the salinity of this aquifer. Thus, we hypothesise about a contamination from Jebel Zemlet El Beida through a border fault and another one from the Sebkhet El Hamma. To cite this article: A. Mhamdi et al., C. R. Geoscience 338 (2006).  相似文献   

4.
In this paper we describe an example of travertine fissure-ridge development along the trace of a normal fault with metre displacement, located in the eastern margin of the Neogene–Quaternary Siena Basin, in the Terme S. Giovanni area (Rapolano Terme, Italy). This morphotectonic feature, 250 m long, 30 m wide and 10 m high, formed from supersaturated hot waters (39.9°C) flowing from thermal springs aligned along the trace of the normal fault dissecting travertines not older than Late Pleistocene (24 ± 3 ka). A straight, continuous fissure with a maximum width of 20 cm occurs at the top of the ridge, along its crest. Hot fluids flow from cones mainly located at the extremities of the ridge, where travertine is depositing. The travertine fissure-ridge shows an asymmetrical profile since it buries the fault scarp. The difference in height of slopes corresponds to the vertical displacement of the normal fault. Fissuring of the recent travertine deposits along the strike of the crestal fissure, as well as recent hydrothermal circulation, lead us to believe that the Terme S. Giovanni normal fault may be currently active. On the whole, the Terme S. Giovanni fissure ridge can be defined as a travertine fault trace fissure-ridge, adding a helpful example for studying the relationship between faulting and travertine deposition.  相似文献   

5.
冲积扇沉积构型研究进展*   总被引:3,自引:2,他引:1       下载免费PDF全文
冲积扇是发育于盆地边缘的一种重要的沉积相类型。近20年来,在冲积扇分布的控制作用、内部构型及储集层特征研究等方面取得了很大的进展:(1)深化了断层活动、物源岩性条件及不同级次基准面旋回对冲积扇沉积构型的控制作用机理;(2)建立了碎屑流主控、碎屑流与河流主控、河流主控的冲积扇以及末端扇的沉积构型模式;(3)分析了冲积扇沉积机制及沉积构型对储集层质量的控制作用。今后有必要充分应用水槽模拟实验、沉积数值模拟和探地雷达等先进技术,对冲积扇沉积过程、内部构型及储集层非均质性进行更为深入的研究。  相似文献   

6.
The Qaidam Basin is a Mesozoic–Cenozoic compresso-shearing basin in western China. This basin has been subsiding since the Indosinian orogeny, and the subsidence is a strongly inherited feature in its Quaternary development. Five third-order sequences (SQ1, SQ2, SQ3, SQ4 and SQ5) were recognised using drilling/logging, coring and seismic data analysis. Each sequence was further divided into transgressive systems tract and regressive systems tract based on the maximum flooding surface. A sequence stratigraphic framework was established that revealed the distribution of sedimentary systems. Seven depositional systems, namely, alluvial fan, fan delta, braided-delta, shore lacustrine, shallow lacustrine, semi-deep lacustrine and incised valley depositional system, were identified from 105 well logs and 2?D seismic lines covering 1600?km. The sedimentary system distribution was identified as follows: (1) large-scale alluvial deposit located on the southern slope and adjacent to Kunlun Mountain and Yaber tectonic zone located northeast of the study area; (2) braided-delta deposits southeast of the Sanhu area; (3) widely developed fan-delta sediments on the base of Qigequan Formation in the Yaber tectonic zone; (4) well-deposited shoal lacustrine facies along the depositional strike in the regressive systems tract; (5) widely distributed shallow lacustrine facies; and (6) incised valley with large lateral extension and incision depth as an entity at the front of the Golmud Basin in the Sanhu area. Two different depositional models, namely, east and west models, were built by conducting an integrated analysis of sequence stratigraphy and sedimentary process. In the Sanhu area, the main controlling factors of the sequence architecture and depositional systems associations of the Qigequan Formation are tectonic subsidence and climate change with sediment supply and lake-level fluctuation secondary factors. This case study provides an example of the analyses of sequence stratigraphy and depositional systems in a salinised plateau basin. The approach combines seismic and sedimentary facies analysis to investigate Quaternary deposition and stratigraphy. The low-amplitude tectonic belt on the northern slope and the lithological traps on the southern slope are predicted to be favourable for the lithological gas reservoirs.  相似文献   

7.
《Sedimentary Geology》1999,123(1-2):81-102
In strike-slip basins, proximal stratal patterns are a function of displacement on basin-bounding faults. In order to better understand factors that control changes in sedimentary facies and stratal patterns of the northeastern part of the Jinan Basin (Cretaceous), a strike-slip basin, we made a detailed analysis of sedimentary facies, depositional architecture and paleoflows. The sedimentary successions can be grouped into five facies associations representing five depositional environments: (1) facies association FA I (alluvial fan); (2) FA II (small-scale Gilbert-type delta); (3) FA III (large-scale, steep delta slope); (4) FA IV (base of large-scale, steep delta slope and prodelta); and (5) FA V (lacustrine plain). The successions are divided into two distinct sedimentary fills on the basis of facies associations, depositional architecture and paleocurrents: (1) marginal fill and (2) longitudinal fill. The marginal fill (ca. 3.2 km thick) is present along the strike-slip basin-bounding fault. The lower part of the marginal fill (ca. 1.3 km thick) consists of alluvial-fan deposits (FA I) along the bounding fault which are transitional northward to small-scale Gilbert-type delta (FA II) and lacustrine plain (FA V) deposits. The upper part of the marginal fill (ca. 1.9 km thick) contains large-scale, steep delta slope (FA III) and base of delta slope/prodelta (FA IV) deposits accompanied with a northward change in facies associations. In the marginal fill, the successive alluvial fan, small-scale Gilbert-type delta and large-scale, steep delta/prodelta deposits are overlapped (shingled) northeastward. The longitudinal fill (ca. 2 km thick) is characterized by eastward overlapped stacks of large-scale, steep delta slope (FA III) and base of delta slope/prodelta (FA IV) deposits with a westward progradation. The longitudinal fill was overstepped by the marginal fill. The northeastward shingled geometry of the marginal fill was most likely caused by sinistral strike-slip displacements on the basin-bounding fault. The slightly oblique (northward) progradation of the marginal fill was due to the northward basin-floor tilting. In the marginal fill, the progressive changes in facies and depositional architecture from the lower alluvial fan/small-scale Gilbert-type delta to the upper large-scale, steep delta/prodelta are suggestive of increase in basin subsidence along the strike-slip basin margin that was closely related to the variation in displacement on the basin-bounding fault. The sinistral strike-slip movements on the bounding fault also caused the eastward overlapping of the longitudinal fill.  相似文献   

8.
钙华是一种特殊的化学或生物化学沉积,它们在大陆内部广泛地分布且含有重要的地质信息,是一种特殊的油气储集体。影响钙华沉积的因素复杂多样,在调研钙华的形成过程及分类的基础上,从气候环境、水文地质条件、水体物理化学条件、生物活动及构造活动五个方面讨论钙华形成的控制因素;并从沉积环境与模式、沉积速率等方面将新疆塔北地区的钙华与国外钙华沉积体进行类比,发现塔北钙华沉积体在温暖湿润的环境下表现出良好的季节性分层,五道班地区钙华在沉积时汇入了大量的陆源碎屑,受生物活动影响较大;硫磺沟地区的钙华沉积则是伴随断裂活动所形成热液上涌的产物。通过对比发现,塔北露头缝洞内充填的钙华内部孔隙发达、连通性较好,并有良好的含油显示,故钙华具备一定的储集能力。  相似文献   

9.
The Athgarh Formation is the northernmost extension of the east coast Upper Gondwana sediments of Peninsular India. The formation of the present area is a clastic succession of 700 m thick and was built against an upland scarp along the north and northwestern boundary of the basin marked by an E-W-ENE-WSW boundary fault. A regular variation in the dominant facies types and association of lithofacies from the basin margin to the basin centre reveals deposition of the succession in an alluvial fan environment with the development of proximal, mid and distal fan subenvironments with the distal part of the fan merging into a lake. Several fans coalesced along the basin margin, forming a southeasterly sloping, broad and extensive alluvial plain terminating to a lake in the centre of the basin. Aggradation of fans along the subsiding margin of the basin resulted in the Athgarh succession showing remarkable lateral facies change in the down-dip direction. The proximal fan conglomerates pass into the sandstone-dominated mid-fan deposits, which, in turn, grade into the cyclic sequences of sandstone-mudstone of the distal fan origin. Further downslope, thick sequence of lacustrine shales occur. The faulted boundary condition of the basin and a thick pile of lacustrine sediments at the centre of the basin suggest that tectonism both in the source area and depositional site has played an important role throughout the deposition of the Athgarh succession of the present area. The vertical succession fines upward with the coarse proximal deposits at the base and fine distal deposits at the top, suggesting deposition of the succession during progressive reduction of the source area relief after a single rapid uplift related to a boundary fault movement.The NW-SE trending fault defining the Son-Mahanadi basin of Lower Gondwana sediments are shear zones of great antiquity and these were rejuvenated under neo-tensional stress during Lower Gondwana sedimentation. The E-W-ENE-WSW trending fault of the Athgarh basin, on the other hand, define tensional rupture of much younger date. In the Early Cretaceous period, there was a reversal of palaeoslope in the Athgarh basin (southward slope) with respect to the Son-Mahanadi basin (northward slope). During the phase drifting of the Indian continent and with the evolution of Indian Ocean in the Early Cretaceous period, the tectonic events in the plate interior was manifested by formation of new grabens like the Athgarh graben.  相似文献   

10.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

11.
Geological structures influence the formation and evolution of sedimentary rocks. The Minas do Camaquã fault zone is a primary structure of the Camaquã Basin, controlling the uplift of the ore-bearing units of the Santa Bárbara Group. To the south of the Camaquã River, the fault zone deforms alluvial and eolian sequences attributed either to the Santa Bárbara or Guaritas groups. In this study, a facies and petrographic composition and diagenetic analysis are presented to understand the evolution of the fault zone. Facies analysis was accomplished using high-resolution orthophoto mosaics and field surveys. Seven sedimentary facies were defined, grouped into three facies associations. Facies associations correspond to a succession of climate-influenced depositional environments. The transition from humid to dry conditions occurs from a fluvial (facies association 1) to eolian environments (facies association 2). These deposits are overlaid at the top by a high energy environment deposits characterized by amalgamated gravelly and sandy bodies, corresponding to an alluvial environment (facies association 3). Despite a small compositional variation, sandstones present a continental block provenance which may be related to mixed anorogenic or orogenic provenance. Diagenetic features are similar in the three facies associations, suggesting the same burial history for the sedimentary deposits separated by the fault zone. The Minas do Camaquã fault zone in the study area is an intraformational structure, as analyzed sequences are attributed to the Guaritas Group, implying a relatively high degree of deformation late after its deposition.  相似文献   

12.
RHEE  JO  & CHOUGH 《Sedimentology》1998,45(3):449-472
The north-western part of the Cretaceous Kyongsang Basin, south-east Korea, comprises alluvial deposits of conglomerate, gravelly sandstone, sandstone and mudstone which can be grouped into four allomembers bounded by stratigraphic discontinuities. The discontinuities trend NW–SE and are marked by distinct facies transitions, abrupt emplacement of conglomerate and thin but persistent mudstone beds. Sedimentary facies and architectural analyses reveal that each allomember formed a depositional system of fluvial channel networks draining toward the south-east with alluvial fans on the northern margin. Each allomember can be characterized by distinctive architecture of channel-fills, clast composition of conglomerate and sandstone/mudstone ratio. Successive units show an eastward shift in the locus of deposition, suggesting basinward relocations of alluvial systems. Such variations with time and space are interpreted to reflect changes in accommodation space and sediment supply during basin evolution, probably caused by fault movements. This study shows that detailed mapping, combined with architectural analysis, and the establishment of alluvial allostratigraphy can help assess changes in alluvial systems and structural development of the basin.  相似文献   

13.
Sedimentation in the upstream reaches of incised valleys is predominantly of alluvial origin and, in most cases, independent from relative sea‐level or lake‐level oscillations. Preserved facies distributions record the depositional response to a combination of allogenic factors, including tectonics, climate and landscape evolution. Tectonics drive fluvial aggradation and degradation through local changes in gradient, both longitudinal and transverse to the valley slope. This article deals with a Pliocene–Pleistocene fluvial valley fill developed in the north‐eastern shoulder of the Siena Basin (Northern Apennines, Italy). Evolution of the valley was not influenced by sea‐level or lake‐level changes and morphological and depositional evolution of valley resulted from extensional tectonics that gave rise to normal and oblique‐slip faults orthogonal and parallel to the valley axis. Data from both field observations and geophysical study are interpreted to develop a comprehensive tectono‐sedimentary model of coeval longitudinal and lateral tilting of the developing alluvial plain. Longitudinal tilting was generated by a transverse, upstream‐dipping normal fault that controlled the aggradation of fining‐upward strata sets. Upstream of the fault zone, valley back‐filling generated an architecture similar to that of classic, sea‐level‐controlled, coastal incised valleys. Downstream of the fault zone, valley down‐filling was related to an overwhelming sediment supply sourced and routed from the active fault zone itself. Lateral tilting was promoted by the activity of a fault oriented parallel to the valley axis, as well as by different offsets along near orthogonal faults. As a result, the valley trunk system experienced complex lateral shifts, which were governed by interacting fault‐generated subsidence and by the topographic confinement of progradational, flank‐sourced alluvial fans.  相似文献   

14.
济阳坳陷下第三系陡岸沉积模式   总被引:22,自引:4,他引:22  
济阳坳陷下第三系沉积时构造运动以断陷为主要特征,在其陡岸形成了以近物源、重力流为主的沉积体系,不同的陡岸类型控制了沉积体系的发育与展布。本文在研究济阳坳陷的陡岸沉积特征的基础上归纳提出了断蚀陡岸沉积模式、间歇陡岸沉积模式和持续陡岸沉积模式三种主要类型.  相似文献   

15.
徐家围子断陷白垩系营城组四段层序地层及沉积相   总被引:4,自引:1,他引:3  
松辽盆地徐家围子断陷白垩系营城组砂砾岩是深层天然气勘探的主要目标层位.营城组四段可以划分出2个三级层序,即营四下层序和营四上层序.营四下层序沉积期断陷深度大、分布范围小、分割性强,形成了相互独立的火山断陷湖,边界发育多个物源,主要发育冲积扇、扇三角洲以及泛滥平原3种沉积相;营四上层序沉积期为一个统一的大断陷,主物源为北东物源,沉积相的发育具有较强的分带性.利用层序地层学方法建立了等时地层层序格架,认为营四段沉积前的构造格局控制了湖盆不同层序沉积相的展布,徐家围子断陷周缘发育一系列沟谷,并沿轴向凸起东侧相继发育了辫状河-辫状三角洲、扇三角洲以及河流三角洲沉积体系.  相似文献   

16.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   

17.
以库车前陆盆地为例,对陆相前陆盆地的形成、沉积充填与层序地层结构、不整合面与层序界面、层序地层组成与其模式、生储盖组合与岩性地层圈闭等关键问题进行了探讨。认为前陆层序是盆缘构造运动的响应,由低位(冲积)体系域、湖侵体系域、高位体系域组成。前陆盆地层序界面表现为构造或沉积不整合面,代表了一次构造幕的发生,其层序地层样式是盆缘造山带构造楔推进作用的结果,是盆地演化的不同阶段的响应,反映了构造运动由强到弱的间歇变化。前陆层序界面代表了沉积结构的大转换,之下为构造稳定阶段的湖相泥岩或膏泥岩,之上为代表构造运动的冲积扇—扇三角洲相的巨厚磨拉石沉积充填。在构造活动期和静止期,盆地不同位置形成不同的沉积充填和地层结构特点。构造活动期以低位(冲积)体系域为主,在毗邻造山带侧以巨厚的冲积扇-扇三角洲-辫状河三角洲相等冲积沉积物为主;构造静止期以湖侵体系域为主,为广泛的河流-湖泊相沉积。沉积厚度从靠近冲断带侧向盆地内逐渐变小。陆相前陆盆地的生储盖组合配置好,储集体广泛分布于低位、湖侵和高位体系域中,以辫状河三角洲和滨湖相为主。其岩性地层圈闭主要分布在前缘斜坡带上,包括沿古隆起边缘的地层超覆不整合圈闭和地层削蚀不整合圈闭,将会成为今后油气勘探的新领域。  相似文献   

18.
19.
The Denizli Basin (southwestern Anatolia, Turkey) contains a record of environmental changes dating since the Early Miocene. Detailed facies analysis of the Neogene formations in this half-graben enables us to document successive depositional regimes and palaeogeographic settings. Sedimentation commenced in the Early Miocene with the deposition of alluvial-fan and fluvial facies (K?z?lburun Formation). At this stage, alluvial fans sourced from elevated areas to the south prograded towards the basin centre. The Middle Miocene time saw the establishment of marginal lacustrine and wetland environments followed by the development of a shallow lake (Sazak Formation). The uppermost part of this unit consists of evaporitic saline lake and saline mudflat facies that grade upward into brackish lacustrine deposits of Late Miocene-Pliocene age (Kolankaya Formation). The lake became shallower at the end of the Pliocene time, as is indicated by expansion shoreface/foreshore facies. In the Early Quaternary, the Denizli Basin was transformed into a graben by the activation of ESE-trending normal faults. Alluvial fans were active at the basin margins, whereas a meandering river system occupied the basin central part.Oxygen isotope data from carbonates in the successive formations show an alternation of wetter climatic periods, when fresh water settings predominated, and very arid periods, when the basin hosted brackish to hypersaline lakes. The Neogene sedimentation was controlled by an active, ESE-trending major normal fault along the basin's southern margin and by climatically induced lake-level changes. The deposition was more or less continuous from the Early Miocene to Late Pliocene time, with local unconformities developed only in the uppermost part of the basin-fill succession. The unconformable base of the overlying Quaternary deposits reflects the basin's transformation from a half-graben into a graben system.  相似文献   

20.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号