首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Independent validation has to be an integral part of the 210Pb-based radiometric dating of recent sediments. The combined use of artificial fallout radionuclides leads to serious problems because only the identification of peaks and their use as time-marks is not sufficiently rigorous to ensure the accuracy of dates. Quantitative modelling of depth profiles requires reliable input functions, which can be substantially different from the atmospheric deposition records. The appropriate treatment of compaction is another source of complexity. Continuum mechanics provide a suitable framework to understand compaction in sedimentary basins with length scales of several km. Nevertheless, early compaction (with length scales of few cm at the sediment surface) takes place under hydrostatic equilibrium conditions, and it can be better understood as a transport phenomenon: a mass flow governed by spatial gradients of a compaction-potential energy, involving a conductivity function. This paper explores some analytical and numerical solutions for these equations to provide insight about the early compaction phenomenon. Given a conductivity function and a constant sedimentation rate, the system will evolve towards a steady-state profile for bulk density. The fingerprint of variable sedimentation rates, among other changes in environmental conditions, will be studied with numerical solutions. Finally, the paper explores the use of bulk density profiles for deriving information on recent sedimentation rates, which could provide independent support for the radiometric dating models.  相似文献   

2.
The effects of sedimentation and compaction on oceanic heat flow   总被引:1,自引:0,他引:1  
Summary. The estimation of environmental effects forms an important part of the interpretation of oceanic heat flow measurements. In particular, the perturbations associated with sedimentation and surface temperature changes must be taken into account. Analytical solutions can be obtained only for individual, simplified versions of these problems, whereas any real example is complicated by the process of sediment compaction which changes the bulk thermal properties with depth. A physical model is developed which uses sediment porosity trends to predict the thermal parameters and material advection rates for an evolving sediment/basement system. These values are then used in a numerical solution to the heat flow equation to give estimates of the perturbed surface heat flux through time. In addition to variations in sedimentation rate, sediment type, radioactive heat production and surface temperature changes are considered. Heat flow corrections may vary by up to a factor of 2 according to sediment type while radioactive heat production can offset the effects of sedimentation by as much as 40 per cent. The results also indicate that alterations determined from simple analytical models tend to over-estimate the true perturbation to the flux.  相似文献   

3.
The Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high‐resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10–30 m Myr?1) and high permeability values (10?15–10?18 m2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One‐dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifies the Opal A–C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source. However, the combined rate of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A–C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.  相似文献   

4.
Provision of accommodation space for aggradation in Holocene deltaic basins is usually ascribed to eustatic sea‐level rise and/or land subsidence due to isostasy, tectonics or sediment compaction. Whereas many Holocene deltas contain peat, the relative contribution of peat compaction to total subsidence has not yet been quantified from field data covering an entire delta. Subsidence due to peat compaction potentially influences temporal and spatial sedimentation patterns, and therefore alluvial architecture. Quantification of the amount and rate of peat compaction was done based on (1) estimates of the initial dry bulk density of peat, derived from a relation between dry bulk density and organic‐matter content of uncompacted peat samples and (2) radiocarbon‐dated basal peat used to reconstruct initial levels of peat formation of currently subsided peat samples. In the Rhine‐Meuse delta, peat compaction has contributed considerably to total basin subsidence. Depending on the thickness of the compressible sequence, weight of the overburden and organic‐matter content of peat, subsidence of up to approximately 3 m in a 10‐m thick Holocene sequence has been calculated. Calculated local subsidence rates of peat levels are up to 0.6 mm year?1, averaged over millennia, which are twice the estimated Holocene‐averaged basin subsidence rates of 0.1–0.3 mm year?1 in the study area. Higher rates of subsidence due to compaction, on the order of a few mm year?1, occur over decades to centuries, following a substantial increase in effective stress caused by sediment loading. Without such an increase in effective stress, peat layers may accumulate for thousands of years with little compaction. Thus, the contribution of peat compaction to total delta subsidence is variable in time. Locally, up to 40% of total Holocene accommodation space has been provided by peat compaction. Implications of the large amount of accommodation space created by peat compaction in deltaic basins are: (1) increased sediment trap efficiency in deltas, which decelerates delta progradation and enhances the formation of relatively thick clastic sequences and (2) enhanced local formation of thick natural levees by renewing existing accommodation space.  相似文献   

5.
Locating and quantifying overpressures are essential to understand basin evolution and hydrocarbon migration in deep basins and thickly sedimented continental margins. Overpressures influence sediment cohesion and hence fault slip in seismically active areas or failure on steep slopes, and may drive catastrophic fluid expulsion. They also represent a significant drilling hazard. Here, we present a method to calculate the pore pressure due to disequilibrium compaction. Our method provides an estimate of the compaction factor, surface porosity and sedimentation rate of each layer in a sediment column using a decompaction model and the constraints imposed by seismic data and geological observations. For a range of surface porosities, an ad hoc iterative equation determines the compaction factor that gives a calculated layer thickness that matches the observed thickness within a tolerance. The surface porosity and compaction factor are then used to obtain a density profile and a corresponding estimate of P‐wave velocity (Vp). The selected parameters are those that give a good match with both the observed and calculated layer thicknesses and Vp profiles. We apply our method to the centre of the Eastern Black Sea Basin (EBSB), where overpressures have been linked to a low‐velocity zone (LVZ) at ca. 5500–8500 m depth. These overpressures were generated by the relatively high sedimentation rate of ca. 0.28 m ka?1 of the low permeability organic‐rich Maikop formation at 33.9–20.5 Ma and an even higher sedimentation rate of ca. 0.85 m ka?1 at 13–11 Ma. We estimate a maximum pore pressure of ca. 138 MPa at ca. 8285 m depth, associated with a ratio of overpressure to vertical effective stress in hydrostatic conditions () of ca. 0.7. These values are lower than those presented in a previous study for the same area.  相似文献   

6.
Abstract The sensitivity of backstripping calculations (sedimentation rates and tectonic subsidence) to uncertainties regarding porosity reduction is examined. Models simulating compaction and externally sourced cementation are considered to provide first-order bounds on the thickness and mass changes for individual sedimentary units. These bounds can be used to estimate uncertainties in sedimentation rate and subsidence estimates. With these models, the timing of cement development can be regarded as unimportant for backstripping calculations. Calculations have been made to evaluate the effect on backstripping calculations of uncertainties in sediment porosity, density and the mechanisms of porosity reduction. Departures from theoretically predicted subsidence curves of the order of 100 m or so have been variously interpreted as the result of fluctuations or uncertainties in sea-level, palaeobathymetry, tectonic stress, sedimentation rates and stratigraphic age. Two examples are given to illustrate that such departures may occur in some subsidence curves merely as a result of imprecise assumptions regarding porosity reduction. Consideration should be given to the uncertainties in models for porosity reduction when using subsidence curves to infer second order tectonic influence during basin evolution.  相似文献   

7.
Heat capacities of the rocks within a sedimentary basin can significantly influence geothermal gradients if sedimentation or erosion is rapid. This paper provides data on specific heat capacities of minerals and nonporous rocks at 20°C, derives equations for calculating specific heat capacities of minerals and nonporous rocks at temperatures between 0°C and 1200°C, and shows that pressure effects on heat capacities of solids can be neglected. It derives an equation for estimating specific heat capacity of any mineral or nonporous rock as a function of density. Finally, it shows how to calculate the specific heat capacity of any mixture of solid materials. A companion paper discusses specific heat capacities of the fluids in pore spaces of rocks and of fluid-filled porous rocks. The data for minerals and rocks provided herein can be incorporated directly into existing modeling software by users. However, the temperature-dependent equations would have to be incorporated by software developers.  相似文献   

8.
Most mathematical models for radiometric dating of recent sediments are particular solutions of a unique physical problem: the advective?Cdiffusive transport of a particle-bound radiotracer within a sediment profile that undergoes accretion. Regardless of the particular assumptions about fluxes, sedimentation rates and the diffusion term, all models assume ideal deposition as a boundary condition at the sediment water interface, i.e. new radioactive input will be deposited above the previously existing material. In sediments with very high porosities, this assumption may be unrealistic, because a fraction of the incoming flux may penetrate rapidly through the connected pore spaces. This process will be referred to as non-ideal deposition. This paper reviews evidence from literature data, discusses the basic processes involved, and establishes the mathematical basis to incorporate non-ideal deposition into one-phase radiometric dating models, as depth-distributed local sources. Through analytical and numerical solutions, this work demonstrates that such penetration patterns can explain excess 210Pb subsurface maxima, often observed in sediment cores, as well as penetration of 137Cs to depths greater than expected from sedimentation rates and diffusion. These ideas are illustrated using examples from the literature in which sediment porosities were >90?%. Implications for radiometric dating include: (1) spurious accelerations in sedimentation rate inferred when applying the constant rate of supply model, and (2) erroneous chronologies, developed when using the maximum depth at which 137Cs can be measured as a chronostratigraphic marker.  相似文献   

9.
黄河内蒙古河段非汛期和汛期冲淤量计算方法   总被引:1,自引:0,他引:1  
基于多沙河流“多来多排”的经验输沙公式,建立了考虑上站来沙量、前期河床累计淤积量、临界输沙水量及干支流泥沙粒径影响的非汛期和汛期输沙量一般表达式。在此基础上,根据黄河内蒙古河段1952-2010年实测的水沙资料,将其应用于黄河内蒙古河段巴彦高勒—三湖河口河段、三湖河口—头道拐河段以及巴彦高勒—头道拐全河段非汛期和汛期输沙量的计算,并应用输沙率法计算了各河段1952-2010年的非汛期和汛期冲淤量及其相应的累计冲淤量。通过输沙量、冲淤量和累计冲淤量计算值与实测值的对比表明,各河段非汛期和汛期输沙量、冲淤量及相应的累计淤积量计算值与实测值的吻合较好,其中非汛期和汛期输沙量计算值和实测值之间的相关系数R2分别约为0.93和0.97;非汛期和汛期冲淤量计算值与实测值之间的相关系数R2分别约为0.80和0.90;非汛期和汛期累计冲淤量之间的相关系数R2分别约为0.94和0.99。结果表明,就吻合程度而言,累计冲淤量优于年冲淤量,汛期优于非汛期。本文建立的冲淤量方法能够很好模拟该河段长历时的非汛期和汛期冲淤过程,可为黄河内蒙古河段输沙量及长期淤积发展趋势的分析提供科学依据。  相似文献   

10.
A quantitative stratigraphic model of mixed carbonate/siliciclastic continental shelves is presented to investigate the relationships between depositional processes and stratigraphic responses at long‐term, large spatial scales. A diffusion model is combined with a fluid‐flow approach to simulate both long‐term factors, i.e. the processes controlling large‐scale architecture, and short‐term processes, i.e. sediment redistribution by storms. Any net sediment accumulation is the result of the succession of a storm and a fair‐weather period. Sediments are mobilized by waves and advected by low‐frequency currents during storm events. Sediments are then reworked and redistributed downslope by diffusive processes during fair‐weather period. The results are successful in capturing several major characteristics of both modern and ancient depositional systems (geometry, differential preservation, net accumulation rates). The study highlights the importance of waves and unidirectional currents. Depositional geometry and shelf morphology depend on the balance between available sediment supply (generated in situ or detrital) and the transport energy, which is related to the style of sediment transport (diffusive or advective), and to the magnitude and frequency of storms.  相似文献   

11.
黄河口泥沙淤积估算问题和方法——以钓口河亚三角洲为例   总被引:11,自引:1,他引:10  
以往在黄河三角洲沉积量的估算中,对沉积物干容重和计算边界等问题不够重视,导致计算结果存在明显出入。本项研究通过广泛收集资料和大量采样分析得到了多种沉积环境下沉积物干容重的计算模型,结合三角洲沉积结构分析和利用地形测量数据,计算了黄河口钓口河流路时期亚三角洲不同时期的沉积量。其中1965年至1974年间钓口河亚三角洲前缘坡脚以内的总淤积量为71.0亿t。其平均干容重为1.36g/cm3。这一干容重用于估算其它亚三角洲沉积量不会造成明显误差。认为忽略三角洲下松软沉积层的压实沉降、三角洲平原相和前缘相中粘性土与非粘性土干容重的差别以及来沙量的测量误差对计算结果影响较小。  相似文献   

12.
Sediment supplied by continental sources is commonly suspected to have exerted a strong influence on the development of canyons and other morphological features on the continental slopes, but rarely is the sediment supply known sufficiently quantitatively to test this link. Here, we outline an area where offshore morphology, in the western Ionian Sea, may be linked to estimated sediment fluxes produced by subaerial erosion in NE Sicily and SW Calabria. Shelves in this area are narrow (<1 km), and the bathymetry shows that rivers and adjacent submarine channels are almost directly connected with each other. Integrated topographic analyses were performed on a merged digital elevation model (DEM) of ASTER data for subaerial topography and multibeam sonar data for submarine bathymetry. Spatial variations in sediment fluxes from onshore erosion were assessed using a variety of methods, namely: long‐term sediment flux from Pleistocene uplift rates, decadal sediment flux from landslide occurrences and published long‐term exhumation rates from 10Be cosmogenic nuclide concentrations. Submarine channels associated with rivers delivering larger sediment fluxes have broad channels, high relief and smooth concave‐upward longitudinal profiles. Conversely, submarine channels that lie offshore small‐flux rivers have straight longitudinal profiles, low relief and steep gradients. Where river catchments supply a greater sediment flux offshore, shelves tend to be wider (ca. 400 m) and submarine channels have gentler gradients. In contrast, where catchments supply less sediment flux, shelves are narrow (250–300 m) and offshore channel gradients are steeper. The variation of submarine morphology with tectonic uplift rate was also studied, but we find that, unlike onshore terrains where tectonics is commonly an important factor influencing channel morphology, in the submarine landscapes, sediment flux appears to dominate here.  相似文献   

13.
Global fallout is the main source of anthropogenic radionuclides in the Mediterranean Sea. This work presents 137Cs, 239+240Pu and 241Am concentrations in the water column in the southwest Alboran Sea, which was sampled in December 1999. A sediment core was taken at 800 m depth in the area (35°47′ N, 04°48′ W). 210Pb, 226Ra, 137Cs and 239+240Pu specific activities were measured at multiple depths in the core for dating purposes. 137Cs and 239+240Pu profiles did not show defined peaks that could be used as time markers, and they extended up to depths for which the 210Pb-based constant rate of supply (CRS) dating model provided inconsistent dates. These profiles can be useful to test dating models, understood as particular solutions of a general advection–diffusion problem, if the time series of radionuclide inputs into the sediment is provided. Thus, historical records of depth-averaged 137Cs and 239+240Pu concentrations in water, and their corresponding fluxes into the sediment, were reconstructed. A simple water-column model was used for this purpose, involving atmospheric fallout, measured distribution coefficient (k d) values, and a first-estimate of sedimentation rates. A dating model of constant mixing with constant sedimentation rate was applied successfully to three independent records (unsupported 210Pb, 137Cs and 239+240Pu), and provided the objective determination of mixing parameters and mass sedimentation rate. These results provide some insight into the fate of atmospheric inputs to this marine environment and, particularly, into the contribution from the Chernobyl accident.  相似文献   

14.
This paper presents a GIS-based mathematical model for the simulation of floodplain sedimentation. The model comprises two components: (1) the existing hydrodynamic WAQUA model that calculates two-dimensional water flow patterns; and (2) the SEDIFLUX model that calculates deposition of sediment based on a simple mass balance concept with a limited number of model parameters. The models were applied to simulate floodplain sediment deposition over river reaches of several kilometres in length. The SEDIFLUX model has been calibrated and validated using interpolated raster maps of sediment deposition observed after the large magnitude December 1993 flood on the embanked floodplain of the lower river Rhine in the Netherlands. The model appeared to be an adequate tool to predict patterns of sediment deposition as the product of the complex interaction among river discharge and sediment concentration, floodplain topography, and the resulting water flow patterns during various discharge levels. In the investigated areas, the resulting annual average sedimentation rates varied between 0.5 mm/year and 4.0 mm/year. The role of the most important mechanisms governing the spatial patterns of overbank deposition, i.e. inundation frequency, sediment load, floodplain topography and its influence on the flow patterns over the floodplain, are discussed.  相似文献   

15.
The present study investigated the use of computational fluid dynamics (CFD) in predicting the formation, development, and migration of free-forming meander bends. The three-dimensional CFD model computed water flow and sediment transport in alluvial channels and predicted vertical and horizontal bed changes. Different algorithms and parameters were tested to provide an insight into the application range of CFD when modelling free-forming meander formation. The computational domain was discretized by an unstructured grid. A control volume method was used for the discretization of the Navier–Stokes equations for the flow calculation and of the convection–diffusion equation for the sediment transport calculation. Turbulence was modelled by the kε turbulence model. The simulation was started from an initially straight grid, with neither sediment feed nor any perturbation at the inflow boundary. The model computed the river bed evolution over a real time period of 3 d. Results were compared with laboratory experiments and showed that the CFD model can predict many of the characteristics of the alluvial meander formation and migration. However, some limitations and uncertainties exist that have to be clarified in future investigations.  相似文献   

16.
The Porcupine Basin is a Mesozoic failed rift located in the North Atlantic margin, SW of Ireland, in which a postrift phase of extensional faulting and reactivation of synrift faults occurred during the Mid–Late Eocene. Fault zones are known to act as either conduits or barriers for fluid flow and to contribute to overpressure. Yet, little is known about the distribution of fluids and their relation to the tectono‐stratigraphic architecture of the Porcupine Basin. One way to tackle this aspect is by assessing seismic (Vp) and petrophysical (e.g., porosity) properties of the basin stratigraphy. Here, we use for the first time in the Porcupine Basin 10‐km‐long‐streamer data to perform traveltime tomography of first arrivals and retrieve the 2D Vp structure of the postrift sequence along a ~130‐km‐long EW profile across the northern Porcupine Basin. A new Vp–density relationship is derived from the exploration wells tied to the seismic line to estimate density and bulk porosity of the Cenozoic postrift sequence from the tomographic result. The Vp model covers the shallowest 4 km of the basin and reveals a steeper vertical velocity gradient in the centre of the basin than in the flanks. This variation together with a relatively thick Neogene and Quaternary sediment accumulation in the centre of the basin suggests higher overburden pressure and compaction compared to the margins, implying fluid flow towards the edges of the basin driven by differential compaction. The Vp model also reveals two prominent subvertical low‐velocity bodies on the western margin of the basin. The tomographic model in combination with the time‐migrated seismic section shows that whereas the first anomaly spatially coincides with the western basin‐bounding fault, the second body occurs within the hangingwall of the fault, where no major faulting is observed. Porosity estimates suggest that this latter anomaly indicates pore overpressure of sandier Early–Mid Eocene units. Lithological well control together with fault displacement analysis suggests that the western basin‐bounding fault can act as a hydraulic barrier for fluids migrating from the centre of the basin towards its flanks, favouring fluid compartmentalization and overpressure of sandier units of its hangingwall.  相似文献   

17.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

18.
Diatoms are used widely for paleolimnological studies in lakes, but their use for studying the environmental history of reservoirs has not been tested extensively. Reservoirs have hydrodynamic characteristics intermediate between those of rivers and lakes. This study assessed the utility of diatom assemblages as recorders of long-term changes in hydrodynamics and spatial gradients in Liuxihe Reservoir, an impoundment in southern China. Four sediment cores were collected in the reservoir, from the riverine, transition and lacustrine zones. Each core was sectioned at 2-cm intervals to investigate the stratigraphic distribution of accumulated diatoms. Varve counting was used to develop a chronology for one of the cores. The unique characteristics of Liuxihe Reservoir, including its large size, great depth, long narrow morphology and strong thermal stratification for 10 months of the year, limit secondary sedimentation processes and preserve the varves, enabling development of an accurate chronology. Damming profoundly altered the physical environment of the former river, especially in the lacustrine zone, where the change is clearly illustrated by diatoms in the sediment. Diatom abundance increased as a consequence of nutrient enrichment after construction of the dam in 1958, but later decreased as the new impoundment stabilized. After damming, relative abundance of Cyclotella increased along with a simultaneous decrease of Navicula and Achnanthes in the lacustrine zone, most significantly in 1963, when Cyclotella replaced Navicula as the dominant genus. This switch was indicative of a general shift from a lotic to a lentic habitat. A longitudinal gradient was apparent in the patterns of sedimentation and diatom accumulation at different sites in the reservoir, with diatom abundance highest in the transition zone. In the long term, water discharge from the reservoir showed a weak, but significant negative correlation with diatom abundance in the lacustrine zone (r = −0.320, P = 0.03). In summary, diatom assemblages in the Liuxihe Reservoir sediments recorded past changes in hydrodynamics, suggesting that paleolimnological study of some impoundments is feasible.  相似文献   

19.
20.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号