首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of water potential areas in arid regions is a crucial element for the enhancement of their water resources and socio-economic development. In fact, water resources system-planning can be used to make various decisions and implement management of water resources policies. The purpose of this study is to identify groundwater storage areas in the high Guir Basin by implementing Geographic Information System (GIS) and Remote Sensing methods. The required data for this study can be summarized into five critical factors: Topography (slope), lithology, rainfall, rock fracture and drainage. These critical factors have been converted by the GIS into thematic maps. For each critical parameter, a coefficient with weight was attributed according to its importance. The map of potential groundwater storage areas is obtained by adding the products (coefficient × weight) of the five parameters. The results show that 50% to 64% of the total area of the High Guir Basin is potentially rich in groundwater, where most of fracture systems are intensely developed. The obtained results are validated with specific yield of the aquifer in the study area. It is noted that there is a strong positive correlation between excellent groundwater potential zones with high flows of water points and it diminishes with low specific yield with poor potential zones.  相似文献   

2.
Identification of water potential areas in arid regions is a crucial element for the enhancement of their water resources and socio-economic development. In fact, water resources system-planning can be used to make various decisions and implement manage- ment of water resources policies. The purpose of this study is to identify groundwater sto- rage areas in the high Guir Basin by implementing Geographic Information System (GIS) and Remote Sensing methods. The required data for this study can be summarized into five critical factors: Topography (slope), lithology, rainfall, rock fracture and drainage. These critical factors have been converted by the GIS into thematic maps. For each cri- tical parameter, a coefficient with weight was attributed according to its importance. The map of potential groundwater storage areas is obtained by adding the products (coeffi- cient × weight) of the five parameters. The results show that 50% to 64% of the total area of the High Guir Basin is potentially rich in groundwater, where most of fracture systems are intensely developed. The obtained results are validated with specific yield of the aqui- fer in the study area. It is noted that there is a strong positive correlation between excel- lent groundwater potential zones with high flows of water points and it diminishes with low specific yield with poor potential zones.  相似文献   

3.
Systematic planning for groundwater exploration using modern techniques is essential for the proper utilization, protection and management of this vital resource. Enhanced Thematic Mapper Plus (ETM+) images, a geographic information system (GIS), a watershed modeling system (WMS) and weighted spatial probability modeling (WSPM) were integrated to identify the groundwater potential areas in the Sinai Peninsula, Egypt. Eight pertinent thematic layers were built in a GIS and assigned appropriate rankings. Layers considered were: rainfall, net groundwater recharge, lithology or infiltration, lineament density, slope, drainage density, depth to groundwater, and water quality. All these themes were assigned weights according to their relative importance to groundwater potentiality and their corresponding normalized weights were obtained based on their effectiveness factors. The groundwater potentiality map was finally produced by WSPM. This map comprises five gradational groundwater potentiality classes ranging from very high to very low. The validity of this unbiased GIS-based model was tested by correlating its results with the published hydrogeological map of Egypt and the actual borehole yields, where a concordant justification was reached. The map declared that the Sinai Peninsula is generally of moderate groundwater potentiality, where this class encompasses an area of 33,120?km2 which represents 52% of its total area.  相似文献   

4.
Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.  相似文献   

5.
Panvel Basin of Raigarh district, Maharashtra, India is the study area for groundwater quality mapping using the Geographic Information System (GIS). The study area is typically covered by Deccan basaltic rock types of Cretaceous to Eocene age. Though the basin receives heavy rainfall, it frequently faces water scarcity problems as well as water quality problems in some specific areas. Hence, a GIS based groundwater quality mapping has been carried out in the region with the help of data generated from chemical analysis of water samples collected from the basin. Groundwater samples show quality exceedence in terms of chloride, hardness, TDS and salinity. These parameters indicate the level of quality of groundwater for drinking and irrigation purposes. Idrisi 32 GIS software was used for generation of various thematic maps and for spatial analysis and integration to produce the final groundwater quality map. The groundwater quality map shows fragments pictorially representing groundwater zones that are desirable and undesirable for drinking and irrigation purposes.  相似文献   

6.
The exploration of new locations for possible groundwater potentiality is required to support the needs of urban and agricultural activities in arid regions such as Wadi Watir basin. The aim of this study is to locate new groundwater wells that can help overcome the water shortage. In order to define favorable zones for groundwater potentiality, several essential factors contributing to groundwater potentiality were identified. These factors include textural classification of alluvial deposits, lithological units, surface and subsurface structures, topographic parameters, geomorphological features and land use/land cover. A hydrogeological prospective model was developed using spatial data which represent these factors. For final groundwater potential map, all factors were converted to raster data to integrate spatially as important thematic layers based on weightage analysis. The groundwater potential map was classified to five classes including very poor to very good potential. The classes of groundwater potential map were checked against the distribution of the groundwater wells, Bedouin communities and agriculture areas, which present a general knowledge of groundwater potential in the study area.  相似文献   

7.
The aim of this paper is to use a knowledge-driven expert-based geographical information system (GIS) model coupling with remote-sensing-derived parameters for groundwater potential mapping in an area of the Upper Langat Basin, Malaysia. In this study, nine groundwater storage controlling parameters that affect groundwater occurrences are derived from remotely sensed imagery, available maps, and associated databases. Those parameters are: lithology, slope, lineament, land use, soil, rainfall, drainage density, elevation, and geomorphology. Then the parameter layers were integrated and modeled using a knowledge-driven GIS of weighted linear combination. The weightage and score for each parameter and their classes are based on the Malaysian groundwater expert opinion survey. The predicted groundwater potential map was classified into four distinct zones based on the classification scheme designed by Department of Minerals and Geoscience Malaysia (JMG). The results showed that about 17% of the study area falls under low-potential zone, with 66% on moderate-potential zone, 15% with high-potential zone, and only 0.45% falls under very-high-potential zone. The results obtained in this study were validated with the groundwater borehole wells data compiled by the JMG and showed 76% of prediction accuracy. In addition statistical analysis indicated that hard rock dominant of the study area is controlled by secondary porosity such as distance from lineament and density of lineament. There are high correlations between area percentage of predicted groundwater potential zones and groundwater well yield. Results obtained from this study can be useful for future planning of groundwater exploration, planning and development by related agencies in Malaysia which provide a rapid method and reduce cost as well as less time consuming. The results may be also transferable to other areas of similar hydrological characteristics.  相似文献   

8.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   

9.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

10.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   

11.
The Wadi Watir delta in the Wadi Watir watershed is a tourist area in the arid southeastern part of the Sinai Peninsula, Egypt, where development and growth of the community on the delta are constrained by the amount of groundwater that can be withdrawn sustainably. To effectively manage groundwater resources in the Wadi Watir delta, the origin of groundwater recharge, groundwater age, and changes in groundwater chemistry in the watershed needs to be understood. Mineral identification, rock chemistry, water chemistry, and the isotopes of hydrogen, oxygen, and carbon in groundwater were used to identify the sources, mixing, and ages of groundwater in the watershed and the chemical evolution of groundwater as it flows from the upland areas in the watershed to the developed areas at the Wadi Watir delta. Groundwater in the Wadi Watir watershed is primarily from recent recharge while groundwater salinity is controlled by mixing of chemically different waters and dissolution of minerals and salts in the aquifers. The El Shiekh Attia and Wadi El Ain areas in the upper Wadi Watir watershed have different recharge sources, either from recharge from other areas or from different storm events. The downgradient Main Channel area receives groundwater flow primarily from the El Shiekh Attia area. Groundwater in the Main Channel area is the primary source of groundwater supplying the aquifers of the Wadi Watir delta.  相似文献   

12.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   

13.
The Wajid Group is a Cambro-Permian sedimentary succession in southwest Saudi Arabia. This group is a well-known groundwater aquifer in the Wadi Al-Dawasir and Najran areas. The group also represents siliciclastic hydrocarbon reservoirs in the Rub' Al-Khali Basin. The Wajid Group is exposed in an area extending from Wadi Al-Dawasir southward to Najran city. This study aims to map and characterize the lineament traces of the Wajid Group outcrops. Landsat-8 OLI/TIRS satellite images with 30-m resolution, Spot-5 satellite images with 2.5-m resolution and SRTM digital elevation models (DEM) with 30-m resolution were used for lineament trace detection. Those lineament traces supplemented by aeromagnetic lineaments detected from reduced to pole magnetic anomaly map of the studied outcrop. Multi-scale lineament trace maps were generated, and the lineament datasets, including orientation and length, were analyzed statistically. Eight lineament trace trends were identified including NW-SE, NNW-SSE, N-S, NNE-SSW, NE-SW, ENE-WSW, E-W, and WNW-ESE. The northerly, northwesterly, and northeasterly trending lineament traces are predominant. The lineament trace lengths are generally followed the power law distribution. The lineament trace trends were validated through field investigation of the Wajid Group outcrop. The reported outcrop fracture trends are consistent with major lineament trace trends. Lineaments within the Wajid Group outcrop are also consistent with those of the southern portion of the Arabian Shield. The results of this study provide insight into the tectonic origin of the Wajid Group outcrop lineaments, and understanding of the lineaments distribution which can help to predict the fluid flow behavior within the groundwater fractured aquifers or hydrocarbon fractured reservoirs in Rub’ Al-Khali Basin.  相似文献   

14.
Groundwater is an important decentralized source of drinking water. Being underground, it is relatively less susceptible to contamination. In addition to domestic needs, it is extensively used for irrigation and industrial purposes. It is therefore necessary to implement groundwater recharge systems by capturing the rainwater runoff. In the present study, GIS-based hydrological assessment of watershed has been used to identify the potential sites for locating the groundwater recharge structures. Based on land use, soil and topography, rainfall runoff modelling was carried out in GIS for a sub-watershed of River Kanhan, in Nagpur District, Maharashtra State, India. Five potential sites with maximum flow accumulation were delineated using the rational method for peak runoff estimation. As the groundwater recharge potential also depends on the geological and geomorphological characteristics of land, analytic hierarchy process (AHP) with expert’s judgement was used for ranking the sites. The criteria considered in AHP were geological features, i.e. lineament density, depth to bedrock and soil cover; geomorphological features, i.e. drainage density, slope, landforms and land use/land cover; and water table level fluctuation. The site P5 with maximum flow accumulation and sandstone rock formation was ranked first. The site P1, where catchment has well-developed drainage and geological formation shows rock with secondary porosity, was ranked second.  相似文献   

15.
The curve number (CN) is a hydrologic parameter used to describe the stormwater runoff potential for drainage areas, and it is a function of land use, soil type, and soil moisture. This study was conducted to estimate the potential runoff coefficient (PRC) using geographic information system (GIS) based on the area’s hydrologic soil group, land use, and slope and to determine the runoff volume. The soil map for the study area was developed using GPS data carried on to identify the soil texture to be used in building a soil hydrological groups map. Unsupervised and supervised classifications were done to Landsat 5/7 TM/ETM image to generate land-use and land-cover map. This map was reclassified into four main classes (forest, grass and shrub, cropland, and bare soil). Slope map for Al-Baha was generated from a 30-m digital elevation model. The GIS technique was used to combine the previous three maps into one map to generate PRC map. Annual runoff depth is derived based on the annual rainfall surplus and runoff coefficient per pixel using raster calculator tool in ArcGIS. An indication that in the absence of reliable ground measurements of rainfall product, it can satisfactorily be applied to estimate the spatial rainfall distribution based on values of R and R 2 (0.9998) obtained. Annual runoff generation from the study area ranged from 0 to 82 % of the total rainfall. Rainfall distribution in the study area shows the wise use of identifying suitable sites for rainwater harvesting, where most of the constructed dams are located in the higher rainfall areas.  相似文献   

16.
Jordan with its limited water resources is currently classified as one of the four water-poor countries worldwide. This study was initiated to explore groundwater potential areas in Tulul al Ashaqif area, Jordan, by integrating remote sensing, geographic information systems (GIS), and multicriteria evaluation techniques. Eight thematic layers were built in a GIS and assigned using multicriteria evaluation techniques suitable weights and ratings regarding their relative contribution in groundwater occurrence. These layers include lithology, geomorphology, lineaments density, drainage density, soil texture, rainfall, elevation, and slope. The final groundwater potentiality map generated by GIS consists of five groundwater potentiality classes: very high, high, moderate, low, and very low. The map showed that the study area is generally of moderate groundwater potentiality (76.35 %). The very high and high potential classes occupy 2.2 and 12.75 % of study area, respectively. The validity of results of this GIS-based model was carried out by superimposing existing hand dug wells on the final map. The single parameter sensitivity test was conducted to assess the influence of the assigned weights on the groundwater potential model, and new effective weights were derived. The resulted groundwater potentiality map showed that the area occupied by each of the groundwater potentiality classes has changed. However, the study area remains generally of moderate groundwater potentiality (70.93 % of the study area). The area occupied by the very high and high potential classes comprises 4.53 and 18.56 % of the study area, respectively.  相似文献   

17.
Aquifer vulnerability has been assessed in the Senirkent-Uluborlu Basin within the Egirdir Lake catchment (Turkey) using the DRASTIC method, based on a geographic information system (GIS). There is widespread agriculture in the basin, and fertilizer (nitrate) and pesticide applications have caused groundwater contamination as a result of leaching. According to hydrogeological data from the study area, surface water and groundwater flow are towards Egirdir Lake. Hence, aquifer vulnerability in the basin should be determined by water quality in Egirdir Lake. DRASTIC layers were prepared using data such as rainfall, groundwater level, aquifer type, and hydraulic conductivity. These data were obtained from hydrogeological investigations and literature. A regional-scale aquifer-vulnerability map of the basin was prepared using overlay analysis with the aid of GIS. A DRASTIC vulnerability map, verified by nitrate in groundwater data, shows that the defined areas are compatible with land-use data. It is concluded that 20.8% of the basin area is highly vulnerable and urgent pollution-preventions measures should be taken for every kind of relevant activity within the whole basin.  相似文献   

18.
Dwarka River Basin is one of the fluoride affected river basin in Birbhum, West Bengal. In the present research work, various controlling factors for fluoride contamination in groundwater i.e., geology, aquifer type, groundwater table, soil, rainfall, geomorphology, drainage density, land use land cover, lineament and fault density, slope and elevation were considered to delineate the potential fluoride contamination zones within Dwarka River Basin in Birbhum. Assigning weights and ranks to various inputs factor class and their sub-class respectively was carried out on the basis of knowledge driven method. Weighted overlay analysis was carried out to generate the final potential fluoride contamination zones which are classified into two broad classes i.e., ‘high’ and ‘low’, and it is observed that major portion of the study area falls under low fluoride contamination category encompassing 88.61% of the total area which accounts for 759.48 km2 and high fluoride contaminated region accounts for 11.40% of the total study area encompassing an area of about 97.67 km2. Majority of high fluoride areas fall along the flood plain of Dwarka River Basin. Finally, for validation 197 reported points within Dwarka having fluoride in underground water are overlaid and an overall accuracy of 92.15% is observed. An accuracy of 83.21% and 84.24% is obtained for success and prediction rate curve respectively.  相似文献   

19.
An integrated approach using hydrogeochemical analysis, remote sensing, GIS, and field data was employed to characterize the groundwater resources in southern Wadi Qena, Egypt. Various thematic maps showing topography, lineaments, wadi deposits, slope, and stream networks were combined through GIS analysis to discriminate groundwater potential zones on the valley floor. The resulting map classifies the area into five groups of groundwater potentiality from very high to very low zones, supported by the groundwater level, well locations, and by the results of previous geophysical studies. Thirty-seven groundwater well data were tested from the Quaternary and Nubian Sandstone aquifers and analyzed for physio-chemical parameters. Results of hydrochemical analysis show that water quality varies widely through the aquifers, and groundwater in the Quaternary aquifer shows the highest salinity values and a predominance of Na and Cl in water chemical facies. Overlay GIS maps of alkalinity (SAR and RSC) and salinity hazards (EC and Cl) of the Quaternary aquifer were prepared. The resulting maps show that samples do not present an alkalinity hazard in most areas but are potentially salinity hazard. Therefore, the water is fit for agricultural use with certain restrictions, but is not suitable for direct human consumption because it is either very hard or too saline.  相似文献   

20.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号