首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Sediment lithology and mineralogy, as well as ostracode, plant macrofossil and stable isotope stratigraphies of lake sediment cores, are used to reconstruct late Holocene hydrologic changes at Kenosee Lake, a relatively large, hyposaline lake in southeastern Saskatchewan. Chronological control is provided by AMS radiocarbon ages of upland and shoreline plant macrofossils. All indicators outline an early, low-water, saline phase of lake history (4100–3000 BP), when the basin was occupied by a series of small, interconnected, sulfate-rich brine pools, as opposed to the single, topographically-closed lake that exists today. A rapid rise in lake-level (3000–2300 BP) led to the establishment of carbonate-rich, hyposaline lake conditions like those today. Lithostratigraphic data and ostracode assemblages indicate peak salinities were attained early in this period of lake infilling, suggesting that the lake-level rise was initially driven by an influx of saline groundwater. Lake-level and water chemistry have remained relatively stable over the last 2000 years, compared to earlier events. Because of a lack of datable organic material in sediments deposited during the last 2000 years, the chronology of recent events is not well resolved. Plant macrofossil, lithostratigraphic and ostracode evidence suggests that lake draw-down, accompanied by slightly higher than present salinites, occurred sometime prior to 600 BP, followed by peak lake-level and freshwater conditions. This most recent high lake stand, indicative of a high water table on the surrounding upland, may also have led to the establishment of an extensive cover of Betula in the watershed, possibly in response to paludification. Ostracode assemblages indicate that peak freshwater conditions occurred within the last 100 years. Since historically documented lake-level fluctuations correlate with decadal scale climatic fluctuations in the meteorological record, and late-Holocene hydrologic dynamics correspond to well documented climatic excursions of the Neoglacial and Little Ice Age, Kenosee Lake dynamics offer insight into the susceptibility of the region's water resources to climate change.  相似文献   

2.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

3.
The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra noise suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.  相似文献   

4.
We inferred late Holocene lake-level changes from a suite of near-shore gravity cores collected in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area, northwestern Ontario. Results were reproduced across all cores. A gravity core from the deep central basin was very similar to the near-shore cores with respect to trends in the percent abundance of the dominant diatom taxon, Cylcotella stelligera. The central basin, however, does not provide a sensitive site for reconstruction of lake-level changes because of the insensitivity of the diatom model at very high percentages of C. stelligera and other planktonic taxa. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several depth transects in Lake 239. The lake-level reconstructions during the past ~3,000 years indicate that lake depth varied on average by ±2 m from present-day conditions, with maximum rises of ~3–4 m and maximum declines of ~3.5–5 m. The diatom-inferred depth record indicates several periods of persistent low levels during the nineteenth century, from ~900 to 1100 AD, and for extended periods prior to ~1,500 years ago. Periods of inferred high lake levels occurred from ~500 to 900 AD and ~1100 to 1650 AD. Our findings suggest that near-shore sediments from small drainage lakes in humid climates can be used to assess long-term fluctuations in lake level and water availability.  相似文献   

5.
During recent years, numerous studies dealing with Holocene lake level fluctuations have been conducted in Finnish Lapland. However, no quantification of lake level variations exists to date. Here, we applied a recently developed modern cladocera – lake depth transfer model to subfossil cladocerans analysed from three small and shallow (< 6 m) kettle-hole lakes in northwestern Finnish Lapland to provide estimates of the amplitudes of long-term lake-level changes in the region. The quantitative inferences were compared to pollen, charcoal and geochemical records from one of the study sites. The lake levels were inferred to be high during the early Holocene; they faced marked reduction up to 4–6 m in the mid-Holocene (≈7000–4000 cal yr BP), and rose again during the latter part of the Holocene. There is some indication of lowered lake levels around 1500 cal yr BP, but interpretation of such small-scale changes is hazardous due to large prediction errors in the initial cladoceran model. The overall pattern of the Holocene lake level variation generally followed the regional changes in climate humidity as reconstructed in previous studies by means of other sedimentary proxy indicators, such as pollen and oxygen isotopic compositions. We postulate that changes in winter precipitation may have had a greater influence on lake-levels than variations in summer precipitation or evaporation.  相似文献   

6.
Diatom assemblages and sulfur content in sediments were analyzed to clarify changes in the sedimentary environment of Kushu Lake, a coastal lake on Rebun Island in Hokkaido, Japan. Salinity variations were assessed by means of a diatom-based index of paleosalinity and the sedimentary sulfur content. This paper discusses the Holocene development of the lake, in relation to Holocene relative sea-level change. For paleoenvironmental interpretation of the lake development, the rationale of the threshold method (Anundsen et al., 1994) was applied.At ca. 8000 yr BP, a coastal embayment (paleo-Kushu Bay) resulted from marine ingression. The threshold elevation at the mouth of the paleo-Kushu Bay kept pace with the rising sea-level, resulting in its enclosure at the culmination of Holocene marine transgression (ca. 6500–5000 yr BP). From predicted relative sea-level at ca. 6000 yr BP for Rebun Island (Nakada et al., 1991), the threshold may have been at least above –3 to –5 m altitude. A freshwater lake environment with strongly anoxic bottom conditions may have occurred from ca. 5500 to 5100 yr BP. After an important episode of marine ingression, the lake was isolated completely from the open sea at ca. 4900 yr BP. The diatom record suggests that the maximum lacustrine extent occurred at ca. 4900–3100 yr BP. Thereafter, water depth decreased at the lake margins.In Kushu Lake, the threshold elevation, due to a build-up of a coastal barrier, prevents us from determining the amplitude of sea-level changes, even though the age of isolation contacts corresponds to periods of regression and climatic deterioration. In spite of isostatic subsidence, the effective protection provided by the well-developed barrier did not allow registration of any relative sea-level fluctuations since its isolation.  相似文献   

7.
We determined hydrogen isotope ratios of modern lake-waters and individual lipids from surface sediments of 36 lakes in the eastern North America. The lakes selected lie on two transects (south–north transect from Florida to Ontario and east–west transect from Wisconsin to South Dakota) and encompass large temperature and moisture gradients, and a wide range of lake water δD values (>100‰). The study allows a rigorous test of the applicability of using δD values of sedimentary lipids as paleoclimatic and paleoenvironmental proxies. We examined a range of lipids including C17 n-alkane, straight chain fatty acids, phytol and sterols in both free extracts and ester-bound fractions in the solvent extracted sediments. Useful isotopic indicators are expected to show a linear correlation and constant fractionation factor between their δD values in surface sediments and modern lake water. Our results demonstrate that several lipid compounds, free and ester-bound palmitic acid (16:0), C17 n-alkane, and phytol are useful candidates for paleoclimate reconstructions, in addition to two sterols that have been suggested previously (. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditons. Geochim. Cosmochim. Acta 65: 213–222). Authigenic or biogenic carbonate in sediments is conventional material for paleoclimatic study using ocean and lake sediments. However, because majority of lake sediments do not contain suitable carbonate materials for isotopic study, hydrogen isotope ratios of these lipids provide invaluable new sources of paleoclimatic and paleoenvironmental information.  相似文献   

8.
Analysis of midge remains in late-Quaternary sediment, recovered from a lake situated north of treeline in northeast Siberia, indicates the occurrence of notable climatic fluctuations during the last 12 ka. The onset of late-glacial warming was disrupted by a marked cooling event – possibly correlative with the Younger Dryas – that occurred between 11,000 and 10,000 yr BP. Increases in the relative abundance of taxa typically found in tundra lakes, such as Hydrobaenus/Oliveridia and Parakiefferiella nigra, and the concurrent decrease in temperate taxa, such as Microtendipes and Corynocera ambigua, suggest climatic deterioration occurred during this interval. At approximately 10,000 yr BP there was a large increase in temperate taxa such as Microtendipes and C. ambigua, and a decline of essentially all cold-water taxa. This suggests that climate was warmer than present since the modern distribution of both Microtendipes and C. ambigua is limited to forested sites in this region. This warm interval lasted until approximately 6000 yr BP when there was a precipitous decline in temperate chironomid taxa and an increase in cold-water chironomid taxa, such as Paracladius, Hydrobaenus/Oliveridia, Abiskomyia, and Parakiefferiella nigra. This cooling continued through the late-Holocene and the modern tundra chironomid assemblage developed by approximately 1400 yr BP.  相似文献   

9.
Abstract The Pitaiito Basin is an intramontane basin (15 × 20 km2) situated at the junction of the Central and Eastern Cordillera in the southern part of the Colombian Andes. Tectonic structures, evolution of the basin and distribution of the sediments suggest that the basin was formed adjacent to an active dextral strike-slip fault. Based on sedimentation rates it is estimated that subsidence started around 4.5 Ma. The basin can be divided into a relatively shallow western part (c. 300 m deep) and a deep eastern part (c. 1200 m deep). The transition between both areas is sharp and is delineated by a NW/SE-oriented fault. The position of this fault is reflected by the areal distribution of the deep non-exposed sediments as well as sediments at the surface: west of this fault the basin infill consists of coarse to medium elastics (conglomerates and sand) whereas in the eastern part fine elastics (clay and peat) are present. The lateral transition between both types of sediment is abrupt and its position is stable in time. The surface and near surface sediments in the Pitalito Basin reflect the last stage of sedimentary infill which came to a halt between 17,000 and 7500 years bp . These sediments were deposited by an eastward prograding fluvial system. The western upstream part of this system differs significantly from that of the eastern part which forms the downstream continuation. The western part exhibits unstable, shallow fluvial channels that wandered freely over the surface which predominantly consists of clayey overbank sediments. The alluvial architecture in the eastern half is characterized by stable channels and thick accumulations of organic-rich flood basin sediments and resembles an anastomosing river. The transition between both alluvial systems also coincides with the N/S-oriented normal fault. Palaeoclimatic conditions over the last c. 61,500 years were determined by means of a pollen record. From c. 61,500 to 20,000 years BP the mean annual temperature fluctuated considerably and decreased by 2–3oC during the relatively warm periods (interstadials) and by 6–8oC during the cold periods (stadials) in comparison with modern temperatures. These changes led to a displacement of the zonal vegetation belts from c. 200 m during the stadials to c. 1500 m in interstadial times without significant effects on the fluvial system present in the Pitaiito Basin until c. 20,000 years BP. Around this period the organic-rich eastern flood basins were choked with sediments and peat growth came to an end. Palynological and sedimentological data suggest that around that period the climate was cold (Δ 6–8oC) and very dry and that a sparse vegetation cover was present around the basin. In these semi-arid climatic conditions the river system changed from an anastomosing pattern to one with ephemeral stream characteristics. This may have lasted until at least 17,000 years BP. Somewhere between 17,000 and 7500 years BP the eastward-flowing infilling river system changed into a NW-flowing erosive river system due to climatic or tectonic control and the present state was reached.  相似文献   

10.
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.  相似文献   

11.
The lithology, radiocarbon chronology, granulometry, geochemistry and distribution of diatoms were investigated in three sediment cores from fresh-water Figurnoye Lake in the southern Bunger Hills, East Antarctica. Our paleolimnological data provide a record of Holocene environmental changes for this region. In the early Holocene (prior to 9.0 ± 0.5 kyr BP), warm climate conditions caused intensive melting of either the floating glacier ice mass or glaciers in the immediate lake surroundings, leading to the accumulation of terrigenous clastic sediments and limiting biogenic production in the lake. From ca. 9.0 ± 0.5 to 5.5 ± 0.5 kyr BP, highly biogenic sediments dominated by benthic mosses formed, indicating more distal glaciers or snowfields. A relatively cold and dry climate during this period caused weaker lake-water circulation and, likely, occurrence of lake ice conditions were more severe than present. The distribution of marine diatoms in the cores shows that, sometime between 8 and 5 kyr BP, limited amounts of marine water episodically penetrated to the lake, requiring a relative sea-level rise exceeding 10–11 m. During the last ca. 5.5 ± 0.5 kyr BP, sedimentation of mainly biogenic matter with a dominance of laminated microbial mats occurred in the lake under warm climatic conditions, interrupted by relative coolings: the first one around 2 kyr BP and then shortly before recent time. Between ca. 5.5 and 4 kyr BP, the drainage of numerous ice-dammed lakes took place in the southern Bunger Hills and, as a result, drier landscapes have existed here from about 4 kyr BP.  相似文献   

12.
Analyses of pollen, plant macrofossils, sediment mineralogy, geochemistry, and lithology of cores from Chappice Lake, southeastern Alberta, provide an outline of paleohydrological changes spanning the last 7300 radiocarbon years. Situated near the northern margin of the Great Plains, Chappice Lake is currently a small (1.5 km2), shallow (<1 m), hypersaline lake. Results of this study suggest that the lake has experienced significant changes in water level and chemistry during the Holocene.From 7300 to 6000 BP the lake oscillated between relatively high stands and desiccation. From 6000 to 4400 BP it was smaller than present and ponded highly saline water. Although extreme water level variations of the preceding period had ceased, pronounced seasonal fluctuations persisted. Between 4400 and 2600 BP, lake level was more stable but gradually rising. Carbonates were a major component of the sediments deposited during this interval. A large, relatively fresh lake existed from 2600 to 1000 BP. Illite was the dominant mineral deposited during this period, but since then has been a minor constituent in a mineral suite dominated by detrital silicates. A series of low-water, high-salinity stands occurred between 1000 and 600 BP, although these low stands were not as pronounced as low-water intervals in the middle Holocene. Relatively high water levels were sustained from 600 BP until the late 1800s. The lake declined significantly in the last one hundred years, notably during the historically documented droughts of the late 1800s, 1920s, 1930s, and 1980s.The timing of paleohydrological events at Chappice Lake corresponds closely with well documented Holocene climatic intervals, such as the Hypsithermal, Neoglaciation, Medieval Warm Period, and Little Ice Age. In addition, historic lake-level fluctuations can be related directly to climate. As a result, the Chappice Lake sedimentary succession offers a rare opportunity to obtain a high-resolution, surrogate record of Holocene climate on the northern Great Plains, and to observe the response of lake chemistry and biota to significant environmental change.Geological Survey of Canada Contribution No. 45191, Palliser Triangle Global Change Contribution No. 2This publication is the first of a series of papers presented at the Conference on Sedimentary and Paleolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor for this series.  相似文献   

13.
While palaeohydrological changes in non-outlet lakes provide a key proxy indicator of past climatic fluctuations, for lake systems which have been chemically insensitive, it is necessary to use indicators of water depth rather than salinity to reconstruct their hydro- climatic histories. A study of diatoms in the modern sediments of Sidi Ali, a non-outlet lake in the Middle Atlas of Morocco, has shown a statistically significant correlation between water depth and the ratio of planktonic to littoral diatoms. This relationship is used to calibrate fossil diatom assemblages from a lake sediment core from the same lake to provide a quantitative index of water levels over the pastc. 6500 years. Palaeoecological evidence suggests that climatically induced hydrological variations have dominated the bulk of the mid-late Holocene lake sediment record, with significant human-induced catchment disturbance only occurring during the twentieth century. The pattern of water depth fluctuations suggests that the response time of the regional groundwater system to climatic forcing is <100 years.This is the third in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

14.
Stratigraphic pollen analysis done on sediment cores from two sites in the upper North Saskatchewan drainage basin of the eastern slopes foothills of the Rocky Mountains in west central Alberta, Canada combined with sedimentological data provide a local vegetational and environmental history. Radiocarbon AMS dates provide a chronology back to 17960 BP. Reconstruction and interpretation of the local pollen zones includes reevaluation of steppe and grassland as analogs for full- and late-glacial vegetation. Regional vegetation from c. 17960 to 16 100 BP is interpreted as an extremely cold semi-arid Artemisia steppe, the vegetation c. 16 100 to 11 900 BP as an Artemisia-Betula shrubland, and the vegetation c. 11 900–10 200 BP as a Picea woodland, in an environment characterized by consistently arid and windy conditions. This reconstruction emphasizes the significance of aridity, as opposed to simply low temperatures, as the critical factor in determining the late Quaternary vegetation of Alberta.This is the 18th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

15.
New palynological and sedimentological data obtained from the basal 3 m of core E96-2P from Lake Edward, Uganda–Congo record conditions wetter than present in the Edward basin from 11 000 to 6700 yr BP, in phase with other climate and vegetation records of northern hemispheric East Africa. Dominant pollen taxa include Celtis spp., Alchornea spp., Olea spp., and Moraceae indicating a moist semi-deciduous tropical forest. More xeric indicators such as Amaranthaceae and Asteraceae together with Poaceae comprise less than 5% of the pollen sum throughout this interval as compared with between 44 and 50% during a lake lowstand at 2000 cal yr BP and at the core top (near modern). The differences between these two assemblages suggest a 25 to 60% increase in annual precipitation during the early- to mid-Holocene as compared to modern (1500–2000 vs. 1200 mm/yr today). Early Holocene sediments in E96-2P are composed of laminated diatom oozes with moderately high total sulfur concentrations (2.8–4.7%) and no authigenic calcite, also indicative of conditions wetter than present. Between 9000 and 6700 yr BP, palynological and sedimentary proxies indicate sub-millennial-scale events related to changes in riverine discharge and runoff in the Edward basin. We attribute the variability in runoff, and hence precipitation, to Holocene variability in Indian or Atlantic Ocean SSTs or to shifts in the relative contribution of Indian and Atlantic moisture sources to the western Rift of equatorial Africa.  相似文献   

16.
A pollen sequence spanning over 4000 years was recovered from a small (0.1 ha)Sphagnum-dominated peatland in the mountains near Sukhumi, Abkhasia, West Georgia. The peatland lies atc. 1650 m a.s.l. in denseFagus-Abies forest. The pollen record reveals totally forested surroundings throughout since at least 4000 years BP (90–95% AP). It begins with a complex forest dominated byFagus with large proportions ofCastanea, Acer andUlmus. ThenCastanea became dominant whileFagus was still prominent. This might indicate a warmer climate. Later development shows a dramatic decline ofCastanea. Its pollen drops down to 3–5%. RecentlyAbies has been experiencing an exponential growth. Now it comprises over 50% of the forest composition around the peatland. These changes have possibly been caused by human influence together with climatic change. The basin started as aPotamogeton-dominated shallow lake with ferns andAlisma along the margins. Later it developed into a sedge fen and finally aSphagnum andMenyanthes poor fen with scatteredCarex limosa. The record indicates a progression towards oligotrophy.This publication is the fifth paper in a series of papers presented at the session on Past Climatic Change and the Development of Peatlands at the ASLO and SWS Meetings in Edmonton, Canada, May 30–June 3, 1993. Dr. P. Kuhry and Dr S. C. Zoltai are serving as Guest Editors.  相似文献   

17.
A 5.52 m long sediment sequence was recovered from Lake Terrasovoje, Amery Oasis, East Antarctica, in order to reconstruct the regional environmental history. The basal sediments, which are dominated by glacial and glaciofluvial clastic sediments, attest to a Late Pleistocene deglaciation of the lake basin. These sediments are overlain by 2.70 m of laminated algal and microbial mats and a few interspersed moss layers. Radiocarbon dating, conducted on bulk organic carbon of 12 samples throughout the organic sequence, provides a reliable chronology since the onset of biogenic accumulation at c. 12,400 cal. year BP. Successful diatom colonization, however, was probably hampered by extensive ice and snow cover on the lake and restricted input of nutrients until 10,200 cal. year BP. A subsequent increase of nutrient supply culminated between 8600 and 8200 cal. year BP and is related to warm summer temperatures and reduced albedo in the catchment. Warm conditions lasted until 6700 cal. year BP, supporting the establishment of a diatom community. Colder temperatures from 6700 cal. year BP culminated in several periods between 6200 and 3700 cal. year BP, when high amounts of sulphur and low abundances of diatoms were deposited due to a perennial ice and snow cover on the lake. During the late Holocene, relatively warm conditions between 3200 and 2300 cal. year BP and between 1500 to 1000 cal. year BP, respectively, indicated by high accumulation of organic matter and reducing bottom water conditions, were interrupted and followed by colder periods.  相似文献   

18.
We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2–5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0–9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.  相似文献   

19.
Sediment traps placed in the profundal region of Elk Lake, north central Minnesota during the 1979 spring and 1983–84 fall and spring seasons monitored seasonal diatom production for two climatically distinctive periods. The spring of 1979 was one of the coldest and wettest on record. Ice out at Elk Lake was 10 days later than average, and spring circulation was short. Fragilaria crotonensis dominated the late spring and early summer diatom production in association with Synedra and Cyclotella species, perhaps because rates of phosphorus supply were low compared to silica. The winter of 1983–84 was drier than usual, and the early but cold spring of 1984 caused ice out at Elk Lake to be about 1 week earlier than normal. Spring storms promoted a long and full circulation that allowed Stephanodiscus minulutus to bloom, presumably in response to increased phosphorus loading related to deep and vigorous circulation. The two dominant diatoms in Elk Lake, F. crotonensis and S. minutulus may reflect climatic patterns that control lake circulation. The climatically regulated occurrence of these diatoms is generally, but not specifically, comparable to their distribution in lake surface sediments throughout Minnesota. A combination of regional and lake-specific studies on the controls of diatom succession and distribution provides climatic insights for interpreting paleolimnogical records of diatoms.  相似文献   

20.
Geomorphology of a beach-ridge complex and adjacent lake basins along the northern shore of Lake Michigan records fluctuations in the level of Lake Michigan for the last 8000 to 10 000 14C yr B.P. (radiocarbon years Before Present). A storm berm at 204.7–206 m (671.6–675.9 ft) exposed in a sandpit provides evidence of a pre-Chippewa Low lake level that is correlated with dropping water levels of Glacial Lake Algonquin (c. 10 300–10 100 14C yr B.P.). Radiocarbon dates from organic material exposed in a river cutbank and basal sediments from Elbow Lake, Mackinac Co., Michigan, indicate a maximum age of a highstand of Lake Michigan at 6900 14C yr B.P., which reached as high as 196.7 m (645 ft), during the early-Nipissing transgression of Lake Michigan. Basal radiocarbon dates from beach swales and a second lake site (Beaverhouse Lake, Mackinac Co.) provide geomorphic evidence for a subsequent highstand which reached 192.6 m (632 ft) at 5390±70 14C yr B.P.Basal radiocarbon dates from a transect of sediment cores, along with tree-ring data, and General Land Office Surveyor notes of a shipwreck, c. A.D. 1846, reveal a late-Holocene rate for isostatic rebound of 22.6 cm/100 radiocarbon years (0.74 ft/100 radiocarbon years) for the northern shore of Lake Michigan, relative to the Lake Michigan-Lake Huron outlet at Port Huron, Michigan. Changes in sediment stratigraphy, inter-ridge distance, and sediment accumulation rates document a mid- to late-Holocene retreat of the shoreline due to isostatic rebound. This regression sequence was punctuated by brief, periodic highstands, resulting in progressive development over the past 5400 14C yr of 75 pairs of dune ridges and swales each formed over an interval of approximately 72 years. Times of lake-level fluctuation were identified at 3900, 3200, and 1000 14C yr B.P. based on changes in inter-ridge spacing, shifts in the course of Millecoquins River, and reorientation of beach-ridge lineation. Soil type, dune development, and selected pollen data provide supporting evidence for this chronology. Late-Holocene beach-ridge development and lake-level fluctuations are related to a retreat of the dominant Pacific airmass and the convergence of the Arctic and Tropical airmasses resulting in predominantly meridional rather than zonal air flow across the Great Lakes region.This is the 13th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号