首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.  相似文献   

2.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

3.
A global eddy-admitting ocean/sea-ice simulation driven over 1958–2004 by daily atmospheric forcing is used to evaluate spatial patterns of sea level change between 1993 and 2001. In the present study, no data assimilation is performed. The model is based on the Nucleus for European Models of the Ocean code at the 1/4° resolution, and the simulation was performed without data assimilation by the DRAKKAR project. We show that this simulation correctly reproduces the observed regional sea level trend patterns computed using satellite altimetry data over 1993–2001. Generally, we find that regional sea level change is best simulated in the tropical band and northern oceans, whereas the Southern Ocean is poorly simulated. We examine the respective contributions of steric and bottom pressure changes to the total regional sea level changes. For the steric component, we analyze separately the contributions of temperature and salinity changes as well as upper and lower ocean contributions. Generally, the model results show that most regional sea level changes arise from temperature changes in the upper 750 m of the ocean. However, contributions of salinity changes and deep steric changes can be locally important. We also propose a map of ocean bottom pressure changes. Finally, we assess the robustness of such a model by comparing this simulation with a second simulation performed by MERCATOR-Ocean based on the same core model, but differing by its short length of integration (1992–2001) and its surface forcing data set. The long simulation presents better performance over 1993–2001 than the short simulation, especially in the Southern Ocean where a long adjustment time seems to be needed. In memory of my little brother Jean-Eudes, whose thirst for science filled out the rich discussions we had about my investigations and his job as user-service provider for MERCATOR-Ocean.  相似文献   

4.
To investigate regional and interannual variability of the ecosystem in the Southern Ocean, a coupled circumpolar ice–ocean–plankton model has been developed. The ice–ocean component (known as BRIOS-2) is based on a modified version of the s-coordinate primitive equation model (SPEM) coupled to a dynamic–thermodynamic sea-ice model. The biological model (BIMAP) comprises two biogeochemical cycles – silica and nitrogen – and a prognostic iron compartment to include possible effects of micronutrient limitation. Simulations with the coupled ice–ocean–plankton model indicate that the physical–biological interaction is not limited to the effect of a varying surface mixed-layer depth. In the Pacific sector, large anomalies in winter mixed-layer depth cause an increased iron supply and enhance primary production and plankton biomass in the following summer, whereas in the Atlantic sector variability in primary production is caused mainly by fluctuations of oceanic upwelling. Thus, the Antarctic Circumpolar Wave (ACW) induces regional oscillations of phytoplankton biomass in both sectors, but not a propagating signal. Furthermore, interannual variability in plankton biomass and primary production is strong in the Coastal and Continental Shelf Zone and the Seasonal Ice Zone around the Antarctic continent. Interannual variability induced by the ACW has large effects on the regional scale, but the associated variability in biogenic carbon fluxes is small compared to the long-term carbon sequestration of the Southern Ocean.  相似文献   

5.
Fourier analysis of the monthly mean northern hemispheric geopotential heights for the levels 700 mb and 300 mb are undertaken for the months of April through to August. The wave to wave and wave to zonal mean flow kinetic energy interactions are computed for specified latitude bands of the northern hemisphere during the pre-monsoon period (April to May) and monsoon period (June through to August) for bad monsoon years (1972, 1974, 1979) and for years of good monsoon rainfall over India (1967, 1973, 1977). Planetary scale waves (waves 1 to 4) are the major kinetic energy source in the upper atmosphere during the monsoon months. Waves 1 and 2 in particular are a greater source of kinetic energy to other waves via both wave to wave interactions as well as wave to zonal mean flow interactions in good monsoon years than in bad monsoon years. The zonal mean flow shows significantly larger gains in the kinetic energy with a strengthening of zonal westerlies in good monsoon years than in bad monsoon years.  相似文献   

6.
 The role of seamounts in the formation and evolution of sea ice is investigated in a series of numerical experiments with a coupled sea ice–ocean model. Bottom topography, stratification and forcing are configured for the Maud Rise region in the Weddell Sea. The specific flow regime that develops at the seamount as the combined response to steady and tidal forcing consists of free and trapped waves and a vortex cap, which is caused by mean flow and tidal flow rectification. The enhanced variability through tidal motion in particular modifies the mixed layer above the seamount enough to delay and reduce sea-ice formation throughout the winter. The induced sea-ice anomaly spreads and moves westward and affects an area of several 100 000 km2. Process studies reveal the complex interaction between wind, steady and periodic ocean currents: all three are required in the process of generation of the sea ice and mixed layer anomalies (mainly through tidal flow), their detachment from the topography (caused by steady oceanic flow) and the westward translation of the sea-ice anomaly (driven by the time-mean wind).  相似文献   

7.
Liu  Xiying  Liao  Guanghong  Lu  Chenchen 《Ocean Dynamics》2020,70(12):1587-1601
Ocean Dynamics - Sea ice on the Southern Ocean has large seasonal variations. Floe size distribution has an important influence on the dynamic and thermodynamic processes of sea ice in the region...  相似文献   

8.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

9.
1 Introduction Antarctic Oscillation is a major mode of Southern Hemispheric (SH) extratropical atmospheric circula- tion. The SH Annual Mode represents a zonally sym- metric exchange of mass between polarward of 60°S and 40°S[1], therefore AAO indicates both the intensity of circumpolar low and zonal mean west wind at mid-high latitudes in SH. Positive phase of AAO tends to deepen circumpolar low and enhance west wind at mid-high latitudes in SH. Many studies show that AAO has bar…  相似文献   

10.
This paper addresses the role of meteorological forcing on mean sea level (MSL) variability at the tide gauge of Cuxhaven over a period from 1871 to 2008. It is found that seasonal sea level differs significantly from annual means in both variability and trends. The causes for the observed differences are investigated by comparing to changes in wind stress, sea level pressure and precipitation. Stepwise regression is used to estimate the contribution of the different forcing factors to sea level variability. The model validation and sensitivity analyses showed that a robust and timely independent estimation of regression coefficients becomes possible if at least 60 to 80 years of data are available. Depending on the season, the models are able to explain between 54 % (spring, April to June) and 90 % (winter, January to March) of the observed variability. Most parts of the observed variability are attributed to changes in zonal wind stress, whereby the contribution of sea level pressure, precipitation and meridional wind stress is rather small but still significant. On decadal timescales, the explanatory power of local meteorological forcing is considerable weaker, suggesting that the remaining variability is attributed to remote forcing over the North Atlantic. Although meteorological forcing contributes to linear trends in some sub-periods of seasonal time series, the annual long-term trend is less affected. However, the uncertainties of trend estimation can be considerably reduced, when removing the meteorological influences. A standard error smaller than 0.5 mm/year requires 55 years of data when using observed MSL at Cuxhaven tide gauge. In contrast, a similar standard error in the meteorologically corrected residuals is reached after 32 years.  相似文献   

11.
Mechanisms of the meridional heat transport in the Southern Ocean   总被引:1,自引:0,他引:1  
The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, θ. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and θ (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT.  相似文献   

12.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

13.
Based on snow- and ice-thickness measurements at >11 000 points augmented by snow- and icecore studies during 4 expeditions from 1986 - 92 in the Weddell Sea, we describe characteristics and distribution patterns of snow and meteoric ice and assess their importance for the mass balance of sea ice. For first-year ice (FY) in the central and eastern Weddell Sea, mean snow depth amounts to 0.16 m (mean ice thickness 0.75 m) compared to 0.53 m (mean ice thickness 1.70 m) for second-year ice (SY) in the northwestern Weddell Sea. Ridged ice retains a thicker snow cover than level ice, with ice thickness and snow depth negatively correlated for the latter, most likely due to aeolian redistribution. During the different expeditions, 8, 15, 17 and 40% of all drill holes exhibited negative freeboard. As a result of flooding and brine seepage into the snow pack, snow salinities averaged 4‰. Through 18O measurements the distribution of meteoric ice (i.e. precipitation) in the sea-ice cover was assessed. Roughly 4% of the total ice thickness consist of meteoric ice (FY 3%, SY 5%). With a mean density of 290 kg/m3, the snow cover itself contributes 8% to total ice mass (7% FY, 11% SY). Analysis of 18O in snow indicates a local maximum in accumulation in the 65 to 75^S latitude zone. Hydrogen peroxide in the snow has proven useful as a temporal tracer and for identification of second-year floes. Drawing on accumulation data from stations at the Weddell Sea coast, it becomes clear that the onset of ice growth is important for the evolution of ice thickness and the interaction between ice and snow. Loss of snow to leads due to wind drift may be considerable, yet is reduced owing to metamorphic processes in the snow column. This is confirmed by a comparison of accumulation data from coastal stations and from snow depths over sea ice. Temporal and spatial accumulation patterns of snow are shown to be important in controlling the sea-ice cover evolution.  相似文献   

14.
The impact on a large-scale sea level pressure field to the regional mean sea level changes of the German Bight is analysed. A multiple linear regression together with an empirical orthogonal function analysis is used to describe the relationship between the sea level pressure and the regional mean sea level considering the time period 1924–2001. Both, the part of the variability and of the long-term trend that can be associated with changes in the sea level pressure, are investigated. Considering the whole time period, this regression explains 58?% of the variance and 33?% of the long-term trend of the regional mean sea level. The index of agreement between the regression result and the observed time series is 0.82. As a proxy for large-scale mean sea level changes, the mean sea level of the North East Atlantic is subsequently introduced as an additional predictor. This further improves the results. For that case, the regression explains 74?% of the variance and 87?% of the linear trend. The index of agreement rises to 0.92. These results suggest that the sea level pressure mainly accounts for the inter-annual variability and parts of the long-term trend of regional mean sea level in the German Bight while large-scale sea level changes in the North East Atlantic account for another considerable fraction of the observed long-term trend. Sea level pressure effects and the mean sea level of the North East Atlantic provide thus significant contributions to regional sea level rise and variability. When future developments are considered, scenarios for their future long-term trends thus need to be comprised in order to provide reliable estimates of potential future long-term changes of mean sea level in the German Bight.  相似文献   

15.
Sea ice has been reported to contain contaminants from atmospheric and nearshore sediment resuspension processes. In this study successive passive microwave images from the 85.5 GHz channels on the Special Sensor Microwave Imager (SSM/I) were merged with drifting buoy trajectories from the International Arctic Buoy Program to compute Arctic sea ice motion in the Russian Arctic between 1988 and 1994. Smooth daily motion fields were averaged to prepare monthly maps making it possible to compute the 7-year mean and mean seasonal ice motions as well as principal components of directional variability of sea ice motion for the entire Arctic and surrounding basins. These mean motion vectors are used to simulate the advection of contaminants deposited on or contained within the sea ice and subsequently transported into the Arctic Ocean in order to predict both their mean trajectories and dispersal over time. The 3-year displacement of contaminants from a number of Russian sites and one American site display various behaviours from substantial displacement and dispersal to almost no movement. This computational procedure could be applied to realtime SSM/I and ice buoy data to provide detailed, all-weather, vector motion maps of ice circulation to predict the path and dispersal of any new substance introduced to the sea ice and transported into the Arctic or Antarctic ocean surface.  相似文献   

16.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

17.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

18.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

19.
The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad range of temporal and spatial scales. In the absence of a coherent in-situ and satellite-based observing system in the region, modelling and data assimilation techniques play a crucial role in both furthering the quantitative understanding and providing better forecasts of this complicated western boundary current system. In this study, we use a regional implementation of the Hybrid Coordinate Ocean Model and assimilate along-track satellite sea level anomaly (SLA) data using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme. This study lays the foundation towards the development of a regional prediction system for the greater Agulhas Current system. Comparisons to independent in-situ drifter observations show that data assimilation reduces the error compared to a free model run over a 2-year period. Mesoscale features are placed in more consistent agreement with the drifter trajectories and surface velocity errors are reduced. While the model-based forecasts of surface velocities are not as accurate as persistence forecasts derived from satellite altimeter observations, the error calculated from the drifter measurements for eddy kinetic energy is significantly lower in the assimilation system compared to the persistence forecast. While the assimilation of along-track SLA data introduces a small bias in sea surface temperatures, the representation of water mass properties and deep current velocities in the Agulhas system is improved.  相似文献   

20.
A continuing goal in the diagnostic studies of the atmospheric general circulation is to estimate various quantities that cannot be directly observed. Evaluation of all the dynamical terms in the budget equations for kinetic energy, vorticity, heat and moisture provide estimates of kinetic energy and vorticity generation, diabatic heating and source/sinks of moisture. All these are important forcing factors to the climate system. In this paper, diagnostic aspects of the dynamics and energetics of the Asian summer monsoon and its spatial variability in terms of contrasting features of surplus and deficient summer monsoon seasons over India are studied with reanalysis data sets. The daily reanalysis data sets from the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) are used for a fifty-two year (1948–1999) period to investigate the large-scale budget of kinetic energy, vorticity, heat and moisture. The primary objectives of the study are to comprehend the climate diagnostics of the Asian summer monsoon and the role of equatorial convection of the summer monsoon activity over India.It is observed that the entrance/exit regions of the Tropical Easterly Jet (TEJ) are characterized by the production/destruction of the kinetic energy, which is essential to maintain outflow/inflow prevailing at the respective location of the TEJ. Both zonal and meridional components contribute to the production of kinetic energy over the monsoon domain, though the significant contribution to the adiabatic generation of kinetic energy originates from the meridional component over the Bay of Bengal in the upper level and over the Somali Coast in the low level. The results indicate that the entire Indian peninsula including the Bay of Bengal is quite unstable during the summer monsoon associated with the production of vorticity within the domain itself and maintain the circulation. The summer monsoon evinces strong convergence of heat and moisture over the monsoon domain. Also, considerable heat energy is generated through the action of the adiabatic process. The combined effect of these processes leads to the formation of a strong diabatic heat source in the region to maintain the monsoon circulation. The interesting aspect noted in this study is that the large-scale budgets of heat and moisture indicate excess magnitudes over the Arabian Sea and the western equatorial Indian Ocean during surplus monsoon. On the other hand, the east equatorial Indian Ocean and the Bay of Bengal region show stronger activity during deficient monsoon. This is reflected in various budget terms considered in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号