首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
霍明  陈建兵  章金钊 《岩土力学》2009,30(Z2):263-268
目前黑龙江省对多年冻土区的公路路基下冻土的处理措施主要是以清除为主,文中分别通过现场试验以及数值模拟计算,针对清基与否对路基产生的影响进行了分析。研究发现,对路基基底处理的方案采用清基或不清基方案均是可行的,但清基对路基的热稳定性是不利的。清基对路基温度场较显著的影响发生在施工完成后的1-3年内,在此期间人为上限变化较大,但还不至于造成路基路面的大面积融沉破坏;清基的长期影响是使多年冻土区年平均地温升高, 使路中人为上限下降;清基会使路基内提前约4个月发育融化核,并且融化核厚度也增加0.3~0.6 m;清基对路基温度场造成较大影响的主要影响因素是施工季节与清基后回填土体的初始温度。  相似文献   

2.
青藏铁路格拉段多年冻土上限的确定方法   总被引:1,自引:0,他引:1  
影响多年冻土地区建筑物稳定性的主要部位是冻土上限附近及其上部的季节融化层.准确确定多年冻土上限的位置及掌握其变化规律是冻土地区工程勘察的基本工作和重要内容.介绍了青藏铁路多年冻土上限的勘察和确定方法.  相似文献   

3.
准确确定高纬度地区多年冻土的天然上限深度及其变化规律对于冻土地区铁路工程的设计和施工至关重要。传统现场勘探测温的方法,虽然比较准确,却有很大的时间限制,在非最大融化深度季节无法确定多年冻土的天然上限深度。为了能够在任何勘测季节都可以获得多年冻土的天然上限资料,本文在对大兴安岭多年冻土地区的多年勘测、测温资料的分析研究基础之上,总结推导出了4种比较行之有效的计算多年冻土天然上限的方法,对于快速而准确的确定多年冻土天然上限具有很好的指导作用。  相似文献   

4.
东北多年冻土最大季节融化深度的确定   总被引:4,自引:1,他引:4  
多年冻土地区的最大季节融化深度,亦即天然上限深度,是多年冻土地区铁路工程设计的主要数据之一。因此确定上限深度及其变化,是多年冻土地区工程地质勘测工作中的一个重要内容。 确定上限深度的基本方法,是在最大融化深度达到时间(9、10月份),通过现场勘探或测温直接确定。但由于东北多年冻土地区多为衔接的多年冻土,不衔接的仅存在于大中河流的河床底部,大河岸边,岛状多年冻土区邻近季节冻土区的边缘地带,以及经过人类活动  相似文献   

5.
热融湖影响下多年冻土退化的数值模拟   总被引:2,自引:0,他引:2  
林战举  牛富俊 《地质学报》2013,87(5):737-746
在柱坐标下,运用带相变的数值热传导模型,预测了千年尺度上热融湖对多年冻土退化的影响。预测结果表明,受热融湖的影响,湖底下部及周围多年冻土温度状态发生了较大变化。在湖深相同的情况下,湖底年平均温度越高,对多年冻土的热扰动越明显。当湖底年平均温度等于0℃时,湖底下部及周围多年冻土一般不会形成融化层,只可能引起地温升高;当湖底年平均温度大于0℃时,多年冻土不但温度升高,上限下移,而且可能形成融化层,最终导致多年冻土可能被融穿。湖底年平均温度越高,地温增加越快,融穿多年冻土的时间越短。在湖底年平均温度相同的情况下,水深差异对多年冻土退化的影响不明显。  相似文献   

6.
青藏公路路基变形分析   总被引:29,自引:8,他引:29  
为研究青藏公路多年冻土人为上限在退化过程中对路基变形产生的影响过程和程度, 在唐古拉山以南选择了3处具有代表性的路面进行了为期2 a的路面变形观测. 资料表明, 在多年冻土人为上限退化过程中随着公路路基结构、冻土类型的不同, 路基变形从冻胀和融沉过程、冻胀量和融沉量、发生的时间都有很大的不同. 在高含冰量多年冻土区采用半挖半填结构产生的路基变形最为剧烈, 在含冰量相对少且采用较高路堤结构的地段路基变形过程相对平缓. 同时结合探地雷达的勘察结果对路基下的融化区、多年冻土区的内部结构进行了分析. 结果显示,多年冻土人为上限的下移、地下冰的融化会在多年冻土人为上限以上的地质体中导致较强烈的层间错动和扰动.  相似文献   

7.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   

8.
基于青藏铁路沿线P32和P33监测断面连续10年的含融化夹层路基的地温和变形场地实测数据,分析了该两处监测断面左路肩下多年冻土人为上限、季节冻结最大深度、融化夹层厚度及多年冻土人为上限附近地温的年变化过程;同时分析了P32和P33监测断面左右路肩的总沉降年变化过程、P32监测断面左路肩地温场对变形的影响及P33监测断面左右路肩地温场差异对左右路肩差异沉降的影响。结果表明:P32和P33监测断面左路肩下多年冻土人为上限逐年下降、季节冻结最大深度基本不变、融化夹层厚度逐年增厚及多年冻土人为上限附近地温逐年升高;观测期内,P32和P33监测断面左右路肩变形均以沉降为主,且P32监测断面左右路肩的总沉降变形量均小于P33监测断面;其中P32监测断面左路肩暖季沉降变形明显,冷季发生轻微的冻胀变形,且发生沉降和冻胀的时间略滞后于路基下部温度场的变化;P33监测断面左右路肩地温场的差异导致左右路肩存在差异沉降,且其差异沉降值随时间逐年变大。  相似文献   

9.
根据青藏公路和青藏铁路多年的研究实践,对青藏高原多年冻土区路堤的临界高度进行了分析和讨论. 在青藏高原多年冻土区,由于各地年平均气温不相同,因而各地空气的融化指数和冻结指数不相同. 在同一地区,路堤表面材料特性不同,其表面的融化指数和冻结指数也就不同. 如果在某一地区,路堤表面的融化指数和冻结指数相等,则该地路堤的融化深度和冻结深度也应相等(忽略路堤及基底土体融化状态和冻结状态下导热系数的差异). 在这种情况下,该路堤临界高度等于路堤融化(冻结)深度减去天然上限埋深, 该地区的年平均气温即该路堤临界高度的年平均气温临界值. 对于一定表面特性的路堤,当某地区年平均气温高于临界值时,则该地区不存在路堤临界高度;只有当年平均气温低于临界值时,路堤临界高度才存在,且随年平均气温的降低,临界路堤高度减小. 在此基础上,提出了无临界路堤高度地区路堤的设计原则,以及保持路堤下多年冻土上限不变的工程措施.  相似文献   

10.
边界条件对多年冻土路基热稳定性的影响分析   总被引:1,自引:0,他引:1  
易鑫  喻文兵  陈琳  刘伟博 《冰川冻土》2014,36(2):369-375
多年冻土区的年平均气温是影响冻土路基边界条件的重要因素. 在附面层原理的基础上,考虑采用带有相变的控制方程和数值方法,以相同尺度的路基模型为前提,选取不同的年平均气温为影响因素,对青藏工程走廊公路路基的人为冻土上限和年平均地温进行了研究. 结果表明:公路路基下年平均地温随着年平均气温的升高而升高,人为冻土上限随着年平均气温的升高而显著下降. 在年平均气温为-7.16 ℃时,路基修筑50 a后其年平均地温为-3.61 ℃,其人为冻土上限为-0.97 m;年平均气温为-3.21 ℃的条件下,路基修筑50 a后其年平均地温仅为-0.1 ℃,其人为冻土上限也降至-13.11 m. 因此,可以看出:在未来气候持续变暖的背景下,现有处于稳定状态的冻土路基将逐渐变得不稳定.  相似文献   

11.
工程活动下多年冻土热稳定性评价模型   总被引:11,自引:7,他引:11  
提出了用季节融化层底板到潜在季节冻结深度区间沉积物融化所需要的热量与季节冻结层底板温度升高至0 ℃所需要的热量之和(Qt), 与夏半年土体吸收的热量(Q+)的比值来描述冻土热稳定性(ST=Qt/ Q+). 根据青藏公路沿线地温温度场的监测资料,对多年冻土热稳定性模型进行了计算,并分析了多年冻土热稳定性与年平均地温、多年冻土顶板温度和季节融化深度间的关系. 根据人类工程活动对多年冻土影响,将多年冻土热稳定性分为4类:热稳定型、热稳定过渡型、热不稳定型和热极不稳定型多年冻土.  相似文献   

12.
本文以大量实测资料为基础,探讨了季节融化层导温性能及地温峰值滞后等自然因素对多年冻土上限深度的影响。还通过地表面的热效应和气温脉动的研究,讨论了多年冻土上限深度的小区域特点和未来期望值。提出了适合青藏高原多年冻土区计算多年冻土上限深度的半经验公式。由于主要依据是地温的分布和传导特征,故称之为“地温法”。  相似文献   

13.
大兴安岭阿木尔地区的多年冻土特征及其变化   总被引:2,自引:3,他引:2  
按多年冻土特征可分为:1)坡脚和沼泽湿地多年冻土区;2)山前缓坡多年冻土区;3)河流阶地多年冻土区。多年冻土在退化之中,季节融化深度至少增加了约30cm,厚度减少了52—17m;融区范围在扩大。多年冻土变化的原因主要为气候变暖和强烈的人为活动影响。  相似文献   

14.
青藏铁路清水河地区路基下伏多年冻土地温变化特征研究   总被引:4,自引:2,他引:4  
基于埋设在青藏铁路清水河地区路基中两个断面内的共8个地温测试孔3年来的地温观测资料,研究了该地区铁路路基下伏高原多年冻土融化特征,分析了多年冻土上限的变化规律以及填筑铁路路基施工对下伏多年冻土赋存条件的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土近地表的地温变化特征与天然地面下的多年冻土的地温变化特征有明显的不同,且向阳面与被阴面差别较大。多年冻土的上限在施工初期会有一个明显的下移沉降,随着时间的推移,虽然残存在路基中的热量逐渐消散,多年冻土上限下降会逐渐稳定。由于受到太阳辐射和路基边坡形状及融化夹层的影响,多年冻土上限会逐渐稳定,但不会在短时期内上升到天然地面下多年冻土的上限水平。  相似文献   

15.
块石路基是多年冻土区应用最为广泛的多年冻土路基形式. 为了研究多年冻土区修筑高速公路后块石路基的效果,选取青海省新建共和-玉树高速公路3个块石路基监测断面的实测资料,对路基修筑初期多年冻土温度状况进行了分析. 结果表明:路基修筑初期路基中心原天然地表下0.5 m处仍表现出季节变化规律,至原多年冻土上限深度处,温度波动幅度急剧减小. 块石路基的保温效果与年平均地温密切相关,年平均地温越低,对冻土的保护效果越显著. 受阴阳坡效应的影响,左路肩/坡脚温度高于右路肩/坡脚. 左右路肩及中心孔下多年冻土上限都得到不同程度的抬升,抬升幅度主要受路基高度影响,与多年冻土年平均地温没有必然关系.  相似文献   

16.
大小兴安岭多年冻土退化及其趋势初步评估   总被引:18,自引:19,他引:18  
大小兴安岭多年冻土处于欧亚大陆多年冻土带南缘,地温高、厚度小、热稳定性差、对气候变暖的敏感性强.过去40 a来该区多年冻土退化主要表现为最大季节融化深度增大,厚度减薄,地温升高,融区扩大,多年冻土岛消失等.气候变暖及该区森林植被的锐减是导致多年冻土退化的普遍性和基础性因素,而多种人为活动影响起了加速促进作用.依据多年冻土南界与多年平均气温的密切相关关系,据1991—2000年平均气温-1.0~1.0℃等值线给出了现今多年冻土南界位置,并探讨了未来40~50 a后气温升高1.0~1.5℃情况下多年冻土南界的可能北移情况.  相似文献   

17.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

18.
深上限-退化型多年冻土路基变形特征分析   总被引:1,自引:0,他引:1  
袁堃  章金钊  朱东鹏 《岩土力学》2013,34(12):3543-3548
为了研究深上限-退化型多年冻土路基变形特点,基于青藏公路多年冻土路基地温和沉降现场监测资料,通过分析西大滩、唐古拉山北坡以及唐古拉山南坡路段的土质、冻土含冰量、冻土地温以及路基沉降变形数据,对冻土上限变化过程与路基沉降特点进行了研究,同时对沱沱河和清水河地区冻土路基分层沉降观测结果进行了分析。结果表明,土质和含冰量对退化型冻土路基的沉降变形影响较大,深冻土层的融化对路基沉降变形影响较小,退化型冻土路基的沉降变形主要发生在退化后的冻土层中,退化冻土层在冻融循环过程中,需要较长时间才能完成固结。对于冻土含冰量为少冰、多冰的稳定路段,退化冻土路基年平均沉降速度约为3.9~5.6 mm/a,路基沉降量极小;对于含冰量较高且土质以粉黏性颗粒为主的不稳定路段,路基沉降速度具有持续性和无减缓性的特点,路基年平均沉降量达到0.03 m/a,路基变形表现为整体均匀沉降,横向差异沉降量较小。  相似文献   

19.
保温法在青藏铁路路基工程中应用的适用性评价   总被引:1,自引:1,他引:0  
温智  盛煜  马巍  吴基春 《冰川冻土》2005,27(5):694-700
保护冻土原则是多年冻土区路基设计的首要选择.运用带相变瞬态温度场的有限元数值解法,模拟分析了铺设聚苯乙烯(EPS)板后铁路路基下多年冻土最大融化深度在随后50 a内随时间的变化,提出了保温板铺设的适宜位置和合理厚度.总结分析了保温路基中保温板的合理宽度和保温路基合理的施工时间,基于年平均气温给出了多年冻土区铁路路基工程中保温法的适用范围,并对多年冻土年平均地温对保温处理措施适用范围的影响进行了分析.  相似文献   

20.
青海高原中、 东部多年冻土及寒区环境退化   总被引:17,自引:13,他引:4  
近年来, 随着全球气候变暖和人类社会经济活动的增强, 处于季节冻土向片状连续多年冻土过渡区的青海高原中、 东部多年冻土退化显著. 巴颜喀拉山南坡清水河地区岛状冻土分布南界向北萎缩5 km; 清水河、 黄河沿、 星星海南岸、 黑河沿岸、 花石峡等岛状冻土和不连续多年冻土出现融化夹层和不衔接多年冻土, 有些地区冻土岛和深埋藏多年冻土消失, 多年冻土上限下降、 季节冻结深度变浅; 片状连续多年冻土地温升高、 冻土厚度减薄. 1991-2010年巴颜喀拉山南北坡不连续多年冻土分布下界分别上升90 m和100 m, 1995-2010年布青山南北坡不连续多年冻土分布下界分别上升80 m和50 m. 造成冻土退化的主要原因为气候变暖, 使得地表年均温度由负变正, 冻结期缩短, 融化期延长, 冻/融指数比缩小. 伴随着冻土退化, 高寒环境也显著退化, 地下水位下降, 植被覆盖度降低, 高寒沼泽湿地和河湖萎缩, 土地荒漠化和沙漠化造成了地表覆被条件改变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号