首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method to improve the calculation of overland flow in distributed groundwater recharge models is presented and applied to two sub‐catchments in the Thames Basin, UK. Recharge calculation studies tend to simulate the runoff flow component of river flow in a simplistic way, often as a fraction of rainfall over a particular period. The method outlined in this study intends to improve the calculation of groundwater recharge estimates in distributed recharge models but does not present an alternative to complex overland flow simulators. This method uses seasonally varying coefficients to calculate runoff for specified hydrogeological classes or runoff zones, which are used to model baseflow index variations across the basin. It employs a transfer function model to represent catchment storage. Monte Carlo simulation was applied to refine the runoff values. Decoupling the runoff zones between the two sub‐catchments produces a better match between the simulated and observed values; however, the difference between observed runoff and the simulated output indicates other factors, such as landuse and topographical characteristics that affect the generation of runoff flow, need to be taken into account when classifying runoff zones. British Geological Survey © NERC 2011. Hydrological Processes © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, details of a conjunctive surface-subsurface numerical model for the simulation of overland flow are presented. In this model, the complete one-dimensional Saint-Venant equations for the surface flow are solved by a simple, explicit, essentially non-oscillating (ENO) scheme. The two-dimensional Richards equation in the mixed form for the subsurface flow is solved using an efficient strongly implicit finite-difference scheme. The explicit scheme for the surface flow component results in a simple method for connecting the surface and subsurface components. The model is verified using the experimental data and previous numerical results available in the literature. The proposed model is used to study the two-dimensionality effects due to non-homogeneous subsurface characteristics. Applicability of the model to handle complex subsurface conditions is demonstrated.  相似文献   

3.
Complexity in simulating the hydrological response in large watersheds over long times has prompted a significant need for procedures for automatic calibration. Such a procedure is implemented in the basin‐scale hydrological model (BSHM), a physically based distributed parameter watershed model. BSHM simulates the most important basin‐scale hydrological processes, such as overland flow, groundwater flow and stream–aquifer interaction in watersheds. Here, the emphasis is on estimating the groundwater parameters with water levels in wells and groundwater baseflows selected as the calibration targets. The best set of parameters is selected from within plausible ranges of parameters by adjusting the values of hydraulic conductivity, storativity, groundwater recharge and stream bed permeability. The baseflow is determined from stream flow hydrographs by using an empirical scheme validated using a chemical approach to hydrograph separation. Field studies determined that the specific conductance for components of the composite hydrograph were sufficiently unique to make the chemical approach feasible. The method was applied to the Big Darby Creek Watershed, Ohio. The parameter set selected for the groundwater system provides a good fit with the estimated baseflow and observed water well data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper suggests a multi‐criteria protocol for appropriately evaluating the predictions of hydrologic models during calibration and evaluation stages. The protocol includes different statistical, analytical and visual criteria such as analysis of peak and low flows, cumulative volumes, extreme value statistics, performance statistics, etc. Furthermore, the protocol assesses the physical consistency of model predictions by filtering the total observed hydrograph into different flow‐components (baseflow, interflow and overland flow) and using these filtered data in the calibration and evaluation processes. Based on the distributed modelling of a medium size catchment, it is shown that application of the suggested protocol, and in particular the use of the filtered flow‐components in model calibration, enhances the physical consistency of model predictions, adding considerable value to the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A geochemical and end‐member mixing analysis (EMMA) is undertaken in Devil Canyon catchment, located in southern California, to further understanding of watershed behaviour and source water contributions after an acute and extensive wildfire. Physical and chemical transformations in post‐fire watersheds are known to increase overland flow and decrease infiltration, mainly due to formation of a hydrophobic layer at, or near, the soil surface. However, less is known about subsurface flow response in burned watersheds. The current study incorporates EMMA to evaluate and quantify source water contributions before, and after, a catchment affected by wildfires in southern California during the fall of 2003. Pre‐ and post‐fire stream water data were available at several sampling sites within the catchment, allowing the identification of contributing water sources at varying spatial scales. Proposed end‐member observations (groundwater, overland flow, shallow subsurface flow) were also collected to constrain and develop the catchment mixing model. Post‐fire source water changes are more evident in the smaller and faster responding sub‐basin (interior sampling point). Early post‐fire storm events are dominated by overland flow with no significant soil water or groundwater flow contribution. Inter‐storm streamwater in this smaller basin shows an increase in groundwater and a decrease in soil water. In the larger, baseflow‐dominated system, source water components appear less affected by fire. A slight increase in lateral flow is observed with only a slight decrease in baseflow. Changes in the post‐fire flow regimes affect nutrient loading and chemical response of the basin. Relatively rapid recovery of the chaparral ecosystem is evidenced, with active re‐growth and evapotranspiration evidenced by the fourth post‐fire rainy season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Baseflow separation is important for obtaining critical parameters for hydrological models. As measuring the baseflow component directly is difficult, various analytical and empirical baseflow separation methods have been developed and tested. The recursive digital filter (RDF) method is commonly used for baseflow separation due to its simplicity and low data requirement. However, parameters used in the RDF method are often determined arbitrarily, resulting in high uncertainty of the estimated baseflow rate. A more accurate method is the conductivity mass balance (CMB) method, which is established based on the differences in physical processes between baseflow and surface runoff. In this research, the output of the CMB method was used to calibrate the parameters of an RDF model, and the calibrated RDF model was used to estimate monthly, seasonal and annual baseflow rate and baseflow index for the past 19 years using streamflow discharge records. The characteristics of the baseflow hydrographs were found to be consistent with the hydrological and hydrogeological conditions of the research area. Research results indicated that the accuracy of the RDF model has been greatly enhanced after being calibrated with the CMB method so that the RDF model can provide more reliable baseflow separation results for a long‐term study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The need for powerful validation methods for hydrological models including the evaluation of internal stages and spatially distributed simulations has often been emphasized. In this study a multi‐criterial validation scheme was used for validation of TOPMODEL, a conceptual semi‐distributed rainfall–runoff model. The objective was to test TOPMODEL's capability of adequately representing dominant hydrological processes by simple conceptual approaches. Validation methods differed in the type of data used, in their target and in mode. The model was applied in the humid and mountainous Brugga catchment (40 km2) in south‐west Germany. It was calibrated by a Monte Carlo method based on hourly runoff data. Additional information for validation was derived from a recession analysis, hydrograph separation with environmental tracers and from field surveys, including the mapping of saturated areas. Although runoff simulations were satisfying, inadequacies of the model structure compared with the real situation with regard to hydrological processes in the study area were found. These belong mainly to the concept of variable contributing areas for saturation excess overland flow and their dynamics, which were overestimated by the model. The simple TOPMODEL approach of two flow components was found to be insufficient. The multi‐criterial validation scheme enables not only to demonstrate limitations with regard to process representation, but also to specify where and why these limitations occur. It may serve as a valuable tool for the development of physically sound model modifications. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
In watershed modelling, the traditional practice of arbitrarily filling topographic depressions in digital elevation models has raised concerns. Advanced high‐resolution remote sensing techniques, including airborne scanning laser altimetry, can identify naturally occurring depressions that impact overland flow. In this study, we used an ensemble physical and statistical modelling approach, including a 2D hydraulic model and two‐point connectivity statistics, to quantify the effects of depressions on high‐resolution overland flow patterns across spatial scales and their temporal variations in single storm events. Computations for both models were implemented using graphic processing unit‐accelerated computing. The changes in connectivity statistics for overland flow patterns between airborne scanning laser altimetry‐derived digital elevation models with (original) and without (filled) depressions were used to represent the shifts of overland flow response to depressions. The results show that depressions can either decrease or increase (to a lesser degree and shorter duration) the probability that any two points (grid locations) are hydraulically connected by overland flow pathways. We used macro‐connectivity states (Φ) as a watershed‐specific indicator to describe the spatiotemporal thresholds of connectivity variability caused by depressions. Four states of Φ are identified in a studied watershed, and each state represents different magnitudes of connectivity and connectivity changes (caused by depressions). The magnitude of connectivity variability corresponds to the states of Φ, which depend on the topological relationship between depressions, the rising/recession limb, and the total rainfall amount in a storm event. In addition, spatial distributions of connectivity variability correlate with the density of depression locations and their physical structures, which cause changes in streamflow discharge magnitude. Therefore, this study suggests that depressions are “nontrivial” in watershed modelling, and their impacts on overland flow should not be neglected. Connectivity statistics at different spatial scales and time points within a watershed provide new insights for characterizing the distributed and accumulated effects of depressions on overland flow.  相似文献   

14.
As the capacity of computers increases, the size and resolution of numerical models can be increased. In tidal models, however, using an explicit scheme together with high spatial resolution results in an unreasonably small time-step demanded by the CFL condition for stability. This condition is usually the most restrictive and applies to the propagation of the gravity wave.A fully nonlinear three-dimensional model has been developed, using the Galerkin method in the vertical dimension, in which the gravity wave terms are treated by an alternating-direction implicit scheme, while the friction, viscous and advective terms are treated explicitly. This permits a stable solution with a longer time-step than that required in an equivalent explicit scheme, while not needing as much computational effort as a fully implicit scheme. This semi-implicit model is compared with an explicit model in terms of efficiency, accuracy, and stability. Tidal and wind-driven flows and free oscillations in a rectangular sea model are examined, using various boundary conditions. The semi-implicit scheme takes approximately 1.1 times as long to run (per time-step) on the CRAY-1 computer as the explicit scheme.  相似文献   

15.
This study presents a Geographic Information System (GIS)‐based distributed rainfall‐runoff model for simulating surface flows in small to large watersheds during isolated storm events. The model takes into account the amount of interception storage to be filled using a modified Merriam ( 1960 ) approach before estimating infiltration by the Smith and Parlange ( 1978 ) method. The mechanics of overland and channel flow are modelled by the kinematic wave approximation of the Saint Venant equations which are then numerically solved by the weighted four‐point implicit finite difference method. In this modelling the watershed was discretized into overland planes and channels using the algorithms proposed by Garbrecht and Martz ( 1999 ). The model code was first validated by comparing the model output with an analytical solution for a hypothetical plane. Then the model was tested in a medium‐sized semi‐forested watershed of Pathri Rao located in the Shivalik ranges of the Garhwal Himalayas, India. Initially, a local sensitivity analysis was performed to identify the parameters to which the model outputs like runoff volume, peak flow and time to peak flow are sensitive. Before going for model validation, calibration was performed using the Ordered‐Physics‐based Parameter Adjustment (OPPA) method. The proposed Physically Based Distributed (PBD) model was then evaluated both at the watershed outlet as well as at the internal gauging station, making this study a first of its kind in Indian watersheds. The results of performance evaluation indicate that the model has simulated the runoff hydrographs reasonably well within the watershed as well as at the watershed outlet with the same set of calibrated parameters. The model also simulates, realistically, the temporal variation of the spatial distribution of runoff over the watershed and the same has been illustrated graphically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
ABSTRACT

During the last few decades, hydrological models have become very powerful, capable of spatially analysing the hydrological information and accurately representing the geomorphological characteristics of the studied area. However, one of the drawbacks of this heightened intricacy is the amount of time required to set up a hydrological model. In this study, a simple methodology that requires only a minimum set-up time is presented. This methodology employs linear regression to combine the outputs of simple hydrological models to simulate hydrological responses. Two kinds of simple hydrological models are employed. The first one represents the characteristics of the streamflow attributed to overland flow, and the second the characteristics of the streamflow attributed to interflow and baseflow. The methodology was tested in 4 case studies, and the results were encouraging. The best performance was achieved in the case study with data of fine time step with significant length.  相似文献   

19.
Based on the stochastic and phenomenological aspects of hydrological processes, a conceptually based stochastic point process (SPP) model for daily stream‐flow generation is proposed in this paper. In which, storms are defined by a stochastic point process with marked values. All the random variables defining the process are assumed to be mutually independent, which constitutes a compound Poisson point process. The direct surface runoff is regarded as occurring from storage in a cascade of surface linear reservoirs and is responsible for the short‐term variation of the daily stream flows. The baseflow component is considered as coming from subsurface/groundwater storage and is responsible for the long‐term persistence of the storm time‐series. This type of model is proposed as a more realistic model of daily stream flow than models based on pure stochastic processes. Studies on the instantaneous unit hydrograph and the mechanism of baseflow could thereby provide some parameters for this model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号