首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seismic performance of structures is related to the damage inflicted on the structure by the earthquake, which means that formulation of performance‐based design is inherently coupled with damage assessment of the structure. Although the potential for cumulative damage during a long‐duration earthquake is generally recognized, most design codes do not explicitly take into account the damage potential of such events. In this paper, the classical low‐cycle fatigue model commonly used for seismic damage assessment is cast in a framework suitable for incorporating cumulative damage into seismic design. The model, in conjunction with a seismic input energy spectrum, may be used to establish an energy‐based seismic design. In order to ensure satisfactory performance in a structure, the cyclic plastic strain energy capacity of the structure is designed to be larger than or equal to the portion of seismic input energy contributing to cumulative damage. The resulting design spectrum, which depends on the duration of the ground motion, indicates that the lateral strength of the structure must be increased in order to compensate for the increased damage due to an increased number of inelastic cycles that occur in a long‐duration ground motion. Examples of duration‐dependent inelastic design spectra are developed using parameters currently available for the low‐cycle fatigue model. The resulting spectra are also compared with spectra developed using a different cumulative damage model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is Part II of a two‐part paper describing a full‐scale 3‐story 3‐bay concrete‐filled tube (CFT)/buckling‐restrained braced frame (BRBF) specimen tested using psuedo‐dynamic testing procedures. The first paper described the specimen design, experiment, and simulation, whereas this paper focuses on the experimental responses of BRBs and BRB‐to‐gusset connections. This paper first evaluates the design of the gusset connections and the effects of the added edge stiffeners in improving the seismic performance of gusset connections. Test results suggest that an effective length factor of 2.0 should be considered for the design of the gusset plate without edge stiffeners. Tests also confirm that the cumulative plastic deformation (CPD) capacity of the BRBs adopted in the CFT/BRBF was lower than that found in typical component tests. The tests performed suggest that the reduction in the BRB CPD capacities observed in this full‐scale frame specimen could be due to the significant rotational demands imposed on the BRB‐to‐gusset joints. A simple method of computing such rotational demands from the frame inter‐story drift response demand is proposed. This paper also discusses other key experimental responses of the BRBs, such as effective stiffness, energy dissipation, and ductility demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

5.
The estimation of cyclic deformation demand resulting from earthquake loads is crucial to the core objective of performance‐based design if the damage and residual capacity of the system following a seismic event needs to be evaluated. A simplified procedure to develop the cyclic demand spectrum for use in preliminary seismic evaluation and design is proposed in this paper. The methodology is based on estimating the number of equivalent cycles at a specified ductility. The cyclic demand spectrum is then determined using well‐established relationships between seismic input energy and dissipated hysteretic energy. An interesting feature of the proposed procedure is the incorporation of a design spectrum into the proposed procedure. It is demonstrated that the force–deformation characteristics of the system, the ductility‐based force‐reduction factor Rμ, and the ground motion characteristics play a significant role in the cyclic demand imposed on a structure during severe earthquakes. Current design philosophy which is primarily based on peak response amplitude considers cyclic degradation only in an implicit manner through detailing requirements based on observed experimental testing. Findings from this study indicate that cumulative effects are important for certain structures, classified in this study by the initial fundamental period, and should be incorporated into the design process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A ductile Vierendeel frame can be constructed by incorporating steel panel dampers (SPDs) into a moment‐resisting frame (MRF). Thus, the stiffness, strength, and ductility of the lateral force–resisting system can be enhanced. The proposed 3‐segment SPD possesses a center inelastic core (IC) and top and bottom elastic joints. This paper discusses the mechanical properties, capacity design method, and buckling‐delaying stiffeners for the SPDs through the use of cyclic loading tests on 2 specimens. Tests confirm that SPDs' cyclic force vs deformation relationships can be accurately predicted using either the Abaqus or PISA3D model analyses. The paper also presents the capacity design method for boundary beams connected to the SPDs of a typical SPD‐MRF. The seismic performance of an example 6‐story SPD‐MRF is evaluated using nonlinear response history analysis procedures and 240 ground accelerations at 3 hazard levels. Results indicate that under 80 maximum considered earthquake ground accelerations, the mean‐plus‐one standard deviation of the shear deformation of the ICs in the SPDs is 0.055 rad, substantially less than the 0.11 rad deformational capacity observed from the SPD specimens. The experimental cumulative plastic deformation of the proposed SPD is 242 times the yield deformation and is capable of sustaining a maximum considered earthquake at least 8 times before failure. This paper introduces the method of using one equivalent beam‐column element for effective modeling of the 3‐segment SPD. The effects of the IC's relative height and stiffness on the overall SPD's elastic and postelastic stiffness, elastic deformation limits, and inelastic deformational demands are discussed.  相似文献   

7.
In the conventional seismic design of high‐rise reinforced concrete core‐wall buildings, the design demands such as design shear and bending moment in the core wall are typically determined by the response spectrum analysis procedure, and a plastic hinge is allowed to form at the wall base to limit the seismic demands. In this study, it is demonstrated by using a 40‐story core‐wall building that this conventional approach could lead to an unsafe design where the true demands—the maximum inelastic seismic demands induced by the maximum considered earthquake—could be several times greater than the design demands and be unproportionately dominated by higher vibration modes. To identify the cause of this problem, the true demands are decomposed into individual modal contributions by using the uncoupled modal response history analysis procedure. The results show that the true demands contributed by the first mode are reasonably close to the first‐mode design demands, while those contributed by other higher modes are much higher than the corresponding modal design demands. The flexural yielding in the plastic hinge at the wall base can effectively suppress the seismic demands of the first mode. For other higher modes, however, a similar yielding mechanism is either not fully mobilized or not mobilized at all, resulting in unexpectedly large contributions from higher modes. This finding suggests several possible approaches to improve the seismic design and to suppress the seismic demands of high‐rise core‐wall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The implementation of performance‐based design and assessment procedures in seismic codes leads to the need for an accurate estimation of local component demands. According to Part 3 of Eurocode 8 safety checks should be always conducted in terms of plastic rotations, even when linear elastic methods of analysis are used. This paper demonstrates that linear analysis fails to predict inelastic deformation demands at the member level. Therefore, a simplified procedure that allows for the estimation of beam inelastic deformation demands using linear elastic methods of analysis in a simple and conservative way is presented herein. A number of moment‐resisting steel frames designed according to different criteria and exhibiting different column‐to‐beam strength ratios were analysed and used for the derivation of the proposed procedure. A comparative study between alternative methods of quantifying inelastic deformation demands using linear analysis is also carried out. The results obtained allow concluding about the efficiency and conservativeness of the proposed procedure which makes it attractive to be employed in engineering practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Numerous structures have been designed and built without taking earthquake ground motions or outdated seismic design codes into account. In order to improve the seismic performance of existing structures, many retrofit approaches based on performance‐based design have been developed. However, some of these approaches are inapplicable due to structural limitations or because they were developed with the assumption of single‐degree‐of‐freedom, which does not take higher modes into account. To overcome the limitations of these traditional methods, a multi‐performance‐based control design (MPBCD) methodology has been proposed by integrating a decentralized semi‐active control algorithm, magnetorheological dampers, and an advanced multi‐objective optimization method to provide various sets of retrofit control designs to satisfy multiple target performances under multiple seismic intensities without changing structural cross‐section sizes or material properties. This MPBCD method provides engineers with numerous sets of control designs (i.e., control device layouts with control design parameters) to help them select proper control designs to retrofit existing building structures and improve seismic performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Bridge design should take into account not only safety and functionality, but also the cost effectiveness of investments throughout a bridge life‐cycle. This paper presents a probabilistic approach to compute the life‐cycle cost (LCC) of corroding reinforced concrete (RC) bridges in earthquake‐prone regions. The approach is developed by combining cumulative seismic damage and damage associated with corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low‐cycle fatigue analysis. Chloride‐induced corrosion of steel reinforcement is computed based on Fick's second law of diffusion. The proposed methodology accounts for the uncertainties in the ground motion parameters, the distance from the source, the seismic demand on the bridge, and the corrosion initiation time. The statistics of the accumulated damage and the cost of repairs throughout the bridge life‐cycle are obtained by Monte‐Carlo simulation. As an illustration of the proposed approach, the effects of design parameters on the LCC of an example RC bridge are studied. The results are valuable in better estimating the condition of existing bridges and, therefore, can help to schedule inspection and maintenance programs. In addition, by taking into consideration the two deterioration processes over a bridge life‐cycle, it is possible to estimate the optimal design parameters by minimizing, for example, the expected cost throughout the life of the structure. A comparison between the effects of the two deterioration processes shows that, in seismic regions, the cumulative seismic damage affects the reliability of bridges over time more than the corrosion even for corrosive environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Linear elastic analysis procedures are employed exclusively in the traditional seismic design of new structures and widely employed in the seismic assessment of existing structures. It is also a convenient tool for the initial checking of deformations in displacement‐based design. The limitations that should be imposed on linear elastic procedures have been evaluated in this study by comparing the deformation‐based response quantities obtained from response spectrum analysis with those from the nonlinear time history analysis. Both procedures were applied to different design variants of 5, 8, and 12 story moment frames, subjected to 20 strong motion components exhibiting a variety of intensities. Member plastic rotations and interstory drift ratios were employed as the basic response parameter in performance assessment. It has been found that average column demand to capacity ratio (DCR) (the ratio of flexural demand from linear elastic analysis to flexural capacity) and average beam DCR at the critical story are the most effective parameters in determining the validity range of linear elastic procedures in regular moment frames. Limiting values for these response parameters are proposed. Furthermore, amplification factors for member rotation demands predicted by the linear procedures are suggested for moment frames when these limiting values are exceeded. These factors ensure that the amplified linear elastic rotations are not smaller than 84 percentile (mean – 1sigma) of the rotations obtained from nonlinear time history analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A procedure for displacement‐based seismic design (DBD) of reinforced concrete buildings is described and applied to a 4‐storey test structure. The essential elements of the design procedure are: (a) proportioning of members for gravity loads; (b) estimation of peak inelastic member deformation demands in the so‐designed structure due to the design (‘life‐safety’) earthquake; (c) revision of reinforcement and final detailing of members to meet these inelastic deformation demands; (d) capacity design of members and joints in shear. Additional but non‐essential steps between (a) and (b) are: (i) proportioning of members for the ULS against lateral loads, such as wind or a serviceability (‘immediate occupancy’) earthquake; and (ii) capacity design of columns in flexure at joints. Inelastic deformation demands in step (b) are estimated from an elastic analysis using secant‐to‐yield member stiffnesses. Empirical expressions for the deformation capacity of RC elements are used for the final proportioning of elements to meet the inelastic deformation demands. The procedure is applied to one side of a 4‐storey test structure that includes a coupled wall and a two‐bay frame. The other side is designed and detailed according to Eurocode 8. Major differences result in the reinforcement of the two sides, with significant savings on the DBD‐side. Pre‐test calculations show no major difference in the seismic performance of the two sides of the test structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents a method for the direct displacement-based design of steel moment resisting frames, with specific consideration of beam-to-column joint characteristics. The method can be used for steel frames having any type of beam-to-column joints, from rigid and full-strength to semi-rigid and partial-strength. The plastic rotation capacity of the joints is explicitly taken into account within the performance criteria for the design. To assess the accuracy of the method in controlling performance, case study structures were first designed and subsequently analysed using non-linear dynamic analysis with a set of real accelerograms. For all cases, the mean of peak inter-storey drift demands and the mean of peak plastic rotation demands on joints were controlled in accordance with the limits set during design. The results obtained demonstrate that the proposed method is appropriate for the performance-based seismic design of steel moment resisting frames with different joint typologies.  相似文献   

18.
This paper experimentally investigates the application of damage avoidance design (DAD) philosophy to moment‐resisting frames with particular emphasis on detailing of rocking interfaces. An 80% scale three‐dimensional rocking beam–column joint sub‐assembly designed and detailed based on damage avoidance principles is constructed and tested. Incremental dynamic analysis is used for selecting ground motion records to be applied to the sub‐assembly for conducting a multi‐level seismic performance assessment (MSPA). Analyses are conducted to obtain displacement demands due to the selected near‐ and medium‐field ground motions that represent different levels of seismic hazard. Thus, predicted displacement time histories are applied to the sub‐assembly for conducting quasi‐earthquake displacement tests. The sub‐assembly performed well reaching drifts up to 4.7% with only minor spalling occurring at rocking beam interfaces and minor flexural cracks in beams. Yielding of post‐tensioning threaded bars occurred, but the sub‐assembly did not collapse. The externally attached energy dissipators provided large hysteretic dissipation during large drift cycles. The sub‐assembly satisfied all three seismic performance requirements, thereby verifying the superior performance of the DAD philosophy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A new hybrid ductile‐rocking seismic‐resistant design is proposed which consists of a code‐designed buckling‐restrained braced frame (BRBF) that yields along its height and also partially rocks on its foundation. The goal of this system is to cost‐effectively improve the performance of BRBFs, by reducing drift concentrations and residual deformations, while taking advantage of their large ductility and their reliable limit on seismic forces and accelerations along a building's height. A lock‐up device ensures that the full code‐compliant lateral strength can be achieved after a limited amount of column uplift, and supplemental energy dissipation elements are used to reduce the rocking response. This paper outlines the mechanics of the system and then presents analyses on rocking frames with both ductile and elastic braces in order to highlight the large higher mode demands on elastic rocking frames. A parametric study using nonlinear time‐history analysis of BRBF structures designed according to the proposed procedure for Los Angeles, California is then presented. This study investigates the system's seismic response and the effect of different energy dissipation element properties and allowable base rotation values before the lock‐up is engaged. Finally, the effect of vertical mass modeling on analysis results was investigated. These studies demonstrated that the hybrid ductile‐rocking system can in fact improve the global peak and residual deformation response as well as reduce brace damage. This enhanced performance could eliminate the need for expensive repairs or demolition that are otherwise to be expected for conventional ductile fixed base buildings that sustain severe damage.  相似文献   

20.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号