首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, effects of panel zone yielding on the seismic performance of welded-flange-plate (WFP) connections are investigated. In this work, four full-scale beam-to-column connections were used to run the experiments under cyclic loading. The obtained results can potentially lead to a better understanding of the influence of the panel zone inelastic shear deformation on the cyclic behavior of WFP connections for external joints in steel moment resisting frames (SMRFs). The main parameter in the testing program was the panel zone strength having a wide variation to gain the different levels of panel zone yielding. Results showed that all specimens had a high connection rotation capacity to satisfy the requirements of special moment frame connections. However, specimens with different panel zone strengths could provide the different amount of energy dissipation. Severe beam buckling was followed by tearing along the k-line region of the beam in the plastic hinge location, as well as tearing of the beam at the nose of the bottom flange plates which were both observed as a predominant failure mode in the specimens with a stronger panel zone. However, specimens with weak panel zone could develop a significant plastic rotation without causing any major problem to the beam-to-column connection groove welds. Based on mentioned observations and considering the effect of panel zone yielding because of different panel zone strengths on the hysteresis behavior of specimens, failure modes, plastic rotation capacity, and energy dissipation, some modifications were proposed for design requirements of the panel zone strength.  相似文献   

2.
传统抗弯钢框架的梁柱节点通常设计为刚性连接,这种刚性节点具有很大的抗弯刚度,然而节点延性不足,罕遇地震作用导致节点脆性断裂。研究学者提出了多种解决该问题的思路,例如半刚性连接节点、节点加强或削弱方法使塑性铰外移等。本文提出了一种简化的梁柱节点连接方式-铰接连接,改变梁柱节点的传力方式,在节点处设置隅撑提供框架的抗侧刚度,控制结构的失效模式。本文设计了三组抗弯钢框架和铰接隅撑钢框架,分别为3层、5层和8层结构,通过Pushover分析和非线性动力时程分析,对比二者之间的承载力、刚度、延性和层间侧移等抗震性能。研究结果表明:铰接隅撑钢框架具有和传统抗弯钢框架相似的抗侧刚度,且承载能力略高。罕遇地震作用下,铰接隅撑钢框架的层间侧移较小。传统抗弯钢框架失效模式为梁端出现塑性铰,而铰接隅撑钢框架的塑性区域转移至隅撑与梁连接部位。  相似文献   

3.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.  相似文献   

5.
A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault-normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.  相似文献   

6.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A refined component model is proposed to predict the inelastic monotonic response of exterior and interior beam‐to‐column joints for partial‐strength composite steel–concrete moment‐resisting frames. The joint typology is designed to exhibit ductile seismic response through plastic deformation developing simultaneously in the column web panel in shear, the bolted end‐plate connection, the column flanges in bending and the steel reinforcing bars in tension. The model can handle the large inelastic deformations consistent with high ductility moment‐resisting frames. Slip response between the concrete slab and the beams was taken into account. A fibre representation was adopted for the concrete slab to accurately capture the non‐uniform stress distribution and progressive crushing of the concrete at the interface between the concrete slab and the column flange. The model is validated against results from full‐scale subassemblages monotonic physical tests performed at the University of Pisa, Italy. A parametric study is presented to illustrate the capabilities of the model and the behaviour of the joints examined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In the analysis and design of unbraced steel frames various models are employed to represent the behaviour of beam-to-column connections. In one such model, termed here as ‘Simple Construction’, pinned connections are assumed when resisting gravity loads, whereas the same connections are assumed to be moment-resistant rigid connections when resisting lateral loads due to an earthquake or wind. Such connections are designed for moments due to lateral loads only; thus, they are not only flexible but may yield when the gravity and lateral loads act concurrently. This paper establishes the seismic performance of two (one 5-storey and the other 10-storey) unbraced steel building frames designed based on the ‘Simple Construction’ technique and on limit state principles. The first part of the paper describes briefly the design of such frames and compares their static responses with the corresponding responses of frames designed based on the ‘Continuous Construction’ assumption. Using realistic moment-rotation behaviour for flexible beam-to-column connections and realistic member behaviour, the non-linear dynamic responses of such frames for the 1940 El Centro record and 2 times the 1952 Taft record have been established using step-by-step time-history analyses. Floor lateral displacement envelopes, storey shear envelopes and cumulative inelastic rotations of beams, columns and connections are presented. The results indicate that the ‘Simple Construction’ frames experience larger lateral deflections while attracting lesser storey shears. During a major earthquake, the columns and connections of the ‘Simple Construction’ frames experience yielding, whereas in ‘Continuous Construction’ frames the beams and columns experience yielding. The cyclic plastic rotations in the connections and in the columns associated with ‘Simple Construction’ frames are found to be considerably higher.  相似文献   

9.
During a severe earthquake, steel moment resisting frames are expected to experience significant inelastic deformation in their members and joints. This behaviour is dependent upon several design parameters such as member sizes, frame's overstrength, member deformation capacities and the detailing of components. In this study, the influence of such aspects on the inelastic response of frames is investigated. Inelastic static and dynamic analyses were performed on four frames of different designs for a typical six-storey building. The frames were designed and detailed in accordance with current North American code requirements. The computed response of each frame was compared with the behaviour expected by the codes. Recommendations for a design procedure are suggested for improving the structural performance of low-rise steel frames subjected to strong earthquake excitation.  相似文献   

10.
A parametric study of 13 608 ductile moment‐resisting steel frames designed according to Eurocodes 3 and 8 is performed. A flowchart for the evaluation of the seismic‐resistant capacity of the designed frames is developed based on the N2 method. The design structural overstrength, ductility supply, plastic redistribution parameter, supply reduction factor and performance ratio of the frames are analysed. We determine that the frames have performance ratios higher than 1, mostly due to high values of design structural overstrength, showing that the seismic supply produced by the restraints of Eurocodes 3 and 8 is always higher than the seismic demand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
针对胶合木梁-柱节点抗弯能力弱的问题,提出了一种带隅撑的胶合木梁-双肢柱框架结构节点,以提高节点的转动刚度,改善梁柱结构框架的抗侧性能.对3组6个足尺胶合木梁-双肢柱框架结构节点进行了单调和低周反复加载试验以研究节点的抗震性能.结果表明:无隅撑节点类似于铰接,抗弯承载力很小,增设隅撑后显著提高了节点的转动刚度和抗弯承载...  相似文献   

12.
一种高层框架振动分析新方法——修正的Holzer迭代法   总被引:1,自引:0,他引:1  
基于框架侧移柔度系数和等效侧移刚度提出了一种高层框架结构自振频率与振型计算的新方法——修正的Holzer迭代法,使之推广于弯曲型框架,并适用于梁柱任意刚度比情况,可考虑梁柱节点转动和柱的轴向变形,计算简单,精度良好,可供实用。  相似文献   

13.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper assesses the influence of cyclic and in‐cycle degradation on seismic drift demands in moment‐resisting steel frames (MRF) designed to Eurocode 8. The structural characteristics, ground motion frequency content, and level of inelasticity are the primary parameters considered. A set of single‐degree‐of‐freedom (SDOF) systems, subjected to varying levels of inelastic demands, is initially investigated followed by an extensive study on multi‐storey frames. The latter comprises a large number of incremental dynamic analyses (IDA) on 12 frames modelled with or without consideration of degradation effects. A suite of 56 far‐field ground motion records, appropriately scaled to simulate 4 levels of inelastic demand, is employed for the IDA. Characteristic results from a detailed parametric investigation show that maximum response in terms of global and inter‐storey drifts is notably affected by degradation phenomena, in addition to the earthquake frequency content and the scaled inelastic demands. Consistently, both SDOF and frame systems with fundamental periods shorter than the mean period of ground motion can experience higher lateral strength demands and seismic drifts than those of non‐degrading counterparts in the same period range. Also, degrading multi‐storey frames can exhibit distinctly different plastic mechanisms with concentration of drifts at lower levels. Importantly, degrading systems might reach a “near‐collapse” limit state at ductility demand levels comparable to or lower than the assumed design behaviour factor, a result with direct consequences on optimised design situations where over‐strength would be minimal. Finally, the implications of the findings with respect to design‐level limit states are discussed.  相似文献   

15.
This paper presents a rehabilitation technique developed under a design and construction scheme, termed minimal‐disturbance seismic rehabilitation. This scheme pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business while minimizing obstruction of the visual and physical space of building users and the use of heavy construction equipment and hot work (welding/cutting). The developed rehabilitation technique consists of light‐weight steel elements and aims to decrease demands to beam‐ends of steel moment‐resisting frames. The behavior of the baseline model was verified through numerical analysis and proof‐of‐concept testing. Furthermore, the effectiveness of rehabilitation is studied through retrofitting a four‐story steel moment‐resisting frame originally designed with Japanese design guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The implementation of performance‐based design and assessment procedures in seismic codes leads to the need for an accurate estimation of local component demands. According to Part 3 of Eurocode 8 safety checks should be always conducted in terms of plastic rotations, even when linear elastic methods of analysis are used. This paper demonstrates that linear analysis fails to predict inelastic deformation demands at the member level. Therefore, a simplified procedure that allows for the estimation of beam inelastic deformation demands using linear elastic methods of analysis in a simple and conservative way is presented herein. A number of moment‐resisting steel frames designed according to different criteria and exhibiting different column‐to‐beam strength ratios were analysed and used for the derivation of the proposed procedure. A comparative study between alternative methods of quantifying inelastic deformation demands using linear analysis is also carried out. The results obtained allow concluding about the efficiency and conservativeness of the proposed procedure which makes it attractive to be employed in engineering practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The paper investigates the dynamic behaviour of hybrid systems made of partially restrained (PR) steel–concrete composite frames coupled with viscoelastic dissipative bracings. A numerical model that accounts for both the resisting mechanisms of the joint and the viscoelastic contribution of the dissipative bracing is introduced and briefly discussed. The model is first validated against experimental outcomes obtained on a one‐storey two‐bay composite frame with partial strength semi‐rigid joints subjected to free vibrations. A number of time‐history analyses under different earthquake ground motions and peak ground accelerations are then carried out on the same type of frame. The purpose is to investigate the influence of the type of beam‐to‐column connection and property of the viscoelastic bracing on the performance of the hybrid system. The inherent stiffness of the bare PR frame and the plastic hysteresis of the beam‐to‐column joints, which always lead to only limited damage in the joint, are found to provide a significant contribution to the overall structural performance even under destructive earthquakes. This remark leads to the conclusion that the viscoelastic bracing can be effectively used within the hybrid system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a simplified Multi-Degree-Of-Freedom (MDOF) model through modification of fish-bone model (or generic frame). Modified Fish-Bone (MFB) model is developed through three enhancements: (i) the moment of inertia for half-beams is reduced slightly to modify the assumption of equal rotation at each story joints, (ii) a number of truss elements are inserted to the fish-bone model to simulate flexural deformation of moment frames due to axial elongation and contraction of columns, and (iii) moment–rotation relationship of representative rotational springs is supposed to be bilinear instead of trilinear in order to consider simultaneous yielding at both ends of the beam in moment frames. The proposed model is evaluated with respect to nonlinear dynamic analysis results of three classic moment resisting frames subjected to 94 records of FEMA-440 ground motion data set. Moreover, the adequacy of this model is compared with the fish-bone model and two predictors of nonlinear seismic demand. The statistical study of predicted interstory drift demonstrates the superiority of the proposed model over the fish-bone model and both seismic demand predictors.  相似文献   

20.
Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics.Precise prediction of seismic demands is a key component of performance-based design methodologies.This paper presents a seismic demand evaluation of reinforced concrete moment frames with medium ductility.The accuracy of utilizing simplified nonlinear static analysis is assessed by comparison against the results of time history analysis on a number of frames.Displacement profiles,drift demand and maximum plastic rotation were computed to assess seismic demands.Estimated seismic demands were compared to acceptance criteria in FEMA 356.The results indicate that these frames have sufficient capacity to resist interstory drifts that are greater than the limit value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号