首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

3.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Concentrations and fluxes of mercury (Hg) species in surface waters of forested watersheds are affected by hydrological events. The mechanisms of Hg transport during these events are poorly understood and yet may influence Hg bioavailability and exposure to aquatic biota. Three storm events with varying magnitude and intensity were investigated (June, September and November 2005) at a forested watershed in the Adirondack region of New York State, USA. Concentrations of Hg species increased during these events, both above and downstream of wetlands in the watershed. While Hg flux was higher from wetland drainage, the Hg flux from the upland site exhibited a greater relative increase to elevated runoff. Hg flux was controlled by discharge; however, Hg species concentrations were not well correlated with discharge, dissolved organic carbon (DOC), or total suspended solids (TSS) through the duration of events. A counter‐clockwise hysteresis response of DOC with increasing runoff contrasted with the clockwise response for total Hg, suggesting different contributions from source areas for these solutes. Correspondence with elevated total K and NO3? (α < 0·05) during the rising limb of the hydrograph suggests rapid delivery of throughfall Hg, potentially enhanced by hillslope hollows, to the stream channel. As the watershed saturated, stream Hg appears to be derived from the soil Hg pool. Results suggest that particulate Hg did not contribute substantially to total Hg flux during events (<25%). These results emphasize the role of watershed attributes and storm characteristics in Hg transport and bioavailability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Dissolved organic matter (DOM) source and composition are critical drivers of its reactivity, impact microbial food webs and influence ecosystem functions. It is believed that DOM composition and abundance represent an integrated signal derived from the surrounding watershed. Recent studies have shown that land-use may have a long-term effect on DOM composition. Methods for characterizing DOM, such as those that measure the optical properties and size of the molecules, are increasingly recognized as valuable tools for assessing DOM sources, cycling, and reactivity. In this study we measured DOM optical properties and molecular weight determinations to evaluate whether the legacy of forest disturbance alters the amount and composition of stream DOM. Differences in DOM quantity and composition due to vegetation type and to a greater extent, wetland influence, were more pronounced than effects due to disturbance. Our results suggest that excitation-emission matrix fluorescence with parallel factor analysis is a more sensitive metric of disturbance than the other methods evaluated. Analyses showed that streams draining watersheds that have been clearcut had lower dissolved organic carbon (DOC) concentrations and higher microbially-derived and protein-like fluorescence features compared to reference streams. DOM optical properties in a watershed amended with calcium, were not significantly different than reference watersheds, but had higher concentrations of DOC. Collectively these results improve our understanding of how the legacy of forest disturbances and natural landscape characteristics affect the quantity and chemical composition of DOM in headwater streams, having implications for stream water quality and carbon cycling.  相似文献   

9.
10.
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll‐a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290–350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically‐mediated processes. The results of this study highlight that short‐term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short‐term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

13.
We investigate sources of both dissolved and particulate organic carbon in the St Lawrence River from its source (the Great Lakes outlet) to its estuary, as well as in two of its tributaries. Special attention is given to seasonal interannual patterns by using data collected on a bi‐monthly basis from mid‐1998 to mid‐2003. δ13C measurements in dissolved inorganic carbon, dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as molar C : N in particulate organic matter (POM), are used to bring insight into the dynamic between aquatic versus terrigenous sources. In addition, 14C activities of DOC were measured at the outlet of the St Lawrence River to its estuary to assess a mean age of the DOC exported to the estuary. In the St Lawrence River itself, aquatically produced POC dominates terrestrially derived POC and is depleted in 13C by approximately 12‰ versus dissolved CO2. In the Ottawa River, the St Lawrence River's most important tributary, the present dataset did not allow for convincing deciphering of POC sources. In a small tributary of the St Lawrence River, aquatically produced POC dominates in summer and terrestrially derived POC dominates in winter. DOC seems to be dominated by terrestrially derived organic matter at all sampling sites, with some influence of DOC derived from aquatically produced POC in summer in the St Lawrence River at the outlet of the Great Lakes and in one of its small tributaries. The overall bulk DOC is relatively recent (14C generally exceeding 100% modern carbon) in the St Lawrence River at its outlet to the estuary, suggesting that it derives mainly from recent organic matter from topsoils in the watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The input and fate of dissolved organic matter (DOM) can have important consequences for coastal zone productivity in large lakes and oceans. Chromophoric DOM (CDOM) is often delivered to coastal zones from rivers and streams and affects light penetration in a water column. CDOM can protect biota from damaging ultraviolet (UV) light by acting as sunscreen, resulting in increased ecosystem productivity. Alternatively, CDOM can decrease ecosystem productivity by absorbing light needed for photosynthesis and forming photoreaction products that are harmful to coastal zone biota. Increased urbanization of watersheds and seasonal differences in weather patterns change the delivery pathways, reactivity, input, and energy flow of DOM (and its CDOM component) into aquatic systems. This study investigated the effects of watershed and season on the concentrations and potential photodegradation of stream-derived DOM in Lake Superior tributaries, chosen to be geographically and geologically similar but differing in land use. Organic carbon analysis, UV–Visible spectrophotometry, and terrestrial (land use) analysis were used to investigate differences among samples and sample treatments. The major differences in DOM concentration and photochemical response appeared seasonal rather than site specific, with snow-melt samples showing stronger and more consistent changes in UV–Visible parameters while base-flow samples showed stronger and more consistent losses in DOC.  相似文献   

15.
Concentrations of both aluminium (Al) and dissolved organic carbon (DOC) in stream waters are likely to be regulated by factors that influence water flowpaths and residence times, and by the nature of the soil horizons through which waters flow. In order to investigate landscape‐scale spatial patterns in streamwater Al and DOC, we sampled seven streams draining the Hubbard Brook valley in central New Hampshire. We observed considerable variation in stream chemistry both within and between headwater watersheds. Across the valley, concentrations of total monomeric aluminium (Alm) ranged from below detection limits (<0·7 µmol l−1) to 22·3 µmol l−1. In general, concentrations of Alm decreased as pH increased downslope. There was a strong relationship between organic monomeric aluminium (Alo) and DOC concentrations (R2 = 0·92). We observed the highest Alm concentrations in: (i) a watershed characterized by a steep narrow drainage basin and shallow soils and (ii) a watershed characterized by exceptionally deep forest floor soils and high concentrations of DOC. Forest floor depth and drainage area together explained much of the variation in ln Alm (R2 = 0·79; N = 45) and ln DOC (R2 = 0·87; N = 45). Linear regression models were moderately successful in predicting ln Alm and ln DOC in streams that were not included in model building. However, when back‐transformed, predicted DOC concentrations were as much as 72% adrift from observed DOC concentrations and Alm concentrations were up to 51% off. This geographic approach to modelling Al and DOC is useful for general prediction, but for more detailed predictions, process‐level biogeochemical models are required. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Samples of water from poor to very rich fens in the Schefferville region of subarctic Quebec revealed strong spatial and temporal variations in dissolved organic carbon (DOC), ranging from 2 to 40 mg 1?1. Concentrations of DOC tend to increase during the summer and decrease in the autumn, at most sites, which probably reflects increased plant tissue decomposition and higher rates of evapotranspiration. Principal components analysis revealed that DOC is strongly associated with Fe, NO?3-N and NO?2-N, but essentially independent of other chemical properties of the peat water, such as pH, Ca, Mg, K, P, and NH+4-N. Based on observed concentrations of DOC and estimates of summer runoff (June to September), export of DOC from four peatlands ranges from 1·1 to 4·9 gCm?2, with the lowest values for peatlands underlain by dolomite. Molecular weight fractionation of four samples revealed significant differences in the dissolved organic matter (DOM), with the largest fractions (GF/C to 10 000 nmw) being dominant in the more acid samples. The ratio of absorbance at 400 and 600 nm wavelengths (E4:E6) has been used as a simple indicator of differences in DOM type, ranging from 3 to 15. There is a strong seasonal pattern of increasing E4:E6 ratio during the summer at many sites, though this ratio is essentially independent of other chemical properties of peat waters.  相似文献   

17.
Absorbance at 360 nm was measured on 44 filtered streamwater samples of different dissolved organic matter (DOM) contents. A regression equation of DOM on absorbance predicted DOM with a standard error of estimate of 1.26 mgl?1, Use of a published equation relating dissolved organic carbon (DOC) to absorbance gave DOC values for the samples which were consistent with measured DOM. The method offers considerable potential for rapid quantification of dissolved organic matter concentrations in streamwater.  相似文献   

18.
Dissolved organic carbon (DOC) concentrations vary among headwaters, with variation typically decreasing with watershed area. We hypothesized that streamflow intermittence could be an important source of variation in DOC concentrations across a small watershed, through (a) temporal legacies of drying on organic matter accumulation and biotic communities and (b) spatial patterns of connectivity with DOC sources. To test these hypotheses, we conducted three synoptic water chemistry sampling campaigns across a 25.5‐km2 watershed in south‐eastern Idaho during early spring, late summer, and late fall. Using changepoint analysis, we found that DOC variability collapsed at a consistent location (watershed areas ~1.3 to ~1.8 km2) across seasons, which coincided with the watershed area where variability in streamflow intermittence collapsed (~1.5 km2). To test hypothesized mechanisms through which intermittence may affect DOC, we developed temporal, spatial, and spatio‐temporal metrics of streamflow intermittence and related these to DOC concentrations. Streamflow intermittence was a strong predictor of DOC across seasons, but different metrics predicted DOC depending on season. Seasonal changes in the effects of intermittence on DOC reflected seasonal changes from instream to flowpath controls. A metric that captured spatial connectivity to sources significantly predicted DOC during high flows, when DOC is typically controlled by transport. In contrast, a reach‐scale temporal metric of intermittence predicted DOC during the late growing season, when DOC is typically controlled by instream processes and when legacy effects of drying (e.g., diminished biological communities) would likely affect DOC. The effects of intermittence on DOC extend beyond temporal legacies at a point. Our results suggest that legacy effects of intermittence do not propagate downstream in this system. Instead, snapshots of spatial patterns of intermittence upstream of a reach are critical for understanding spatial patterns of DOC through connectivity to DOC sources, and these processes drive patterns of DOC even in perennial reaches.  相似文献   

19.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Permafrost and fire are important regulators of hydrochemistry and landscape structure in the discontinuous permafrost region of interior Alaska. We examined the influence of permafrost and a prescribed burn on concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and other solutes ( , Ca2+, K+, Mg2+, Na+) in streams of an experimentally burned watershed and two reference watersheds with varying extents of permafrost in the Caribou–Poker Creeks Research Watershed in interior Alaska. The low‐permafrost watershed has limited permafrost (3%), the high‐permafrost watershed has extensive permafrost (53%), and the burn watershed has intermediate permafrost coverage (18%). A three end‐member mixing model revealed fundamental hydrologic and chemical differences between watersheds due to the presence of permafrost. Stormflow in the low‐permafrost watershed was dominated by precipitation and overland flow, whereas the high‐permafrost watershed was dominated by flow through the active layer. In all watersheds, organic and groundwater flow paths controlled stream chemistry: DOC and DON increased with discharge (organic source) and base cations and (from weathering processes) decreased. Thawing of the active layer increased soil water storage in the high‐permafrost watershed from July to September, and attenuated the hydrologic response and solute flux to the stream. The FROSTFIRE prescribed burn, initiated on 8 July 1999, elevated nitrate concentrations for a short period after the first post‐fire storm on 25 July, but there was no increase after a second storm in September. During the July storm, nitrate export lagged behind the storm discharge peak, indicating a flushing of soluble nitrate that likely originated from burned soils. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号