首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Collapse assessment of steel moment frames using endurance time method   总被引:1,自引:1,他引:0  
In endurance time(ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specifi ed spectrum, intensifi es with time so they can be used approximately to simulate the average effects of several ground motions scaled to different intensities. In this paper applicability of the ET method for evaluating collapse potential of buildings is investigated. A set of four steel moment frames is used for collapse assessment. The process of using ET method in collapse evaluation is explained and the results are compared with incremental dynamic analysis(IDA) results. It is shown that although the computational effort using the ET method is much less than the IDA analysis, the results of both methods are consistent. Finally collapse fragility curves using ET and IDA methods are produced and it is shown that the probabilities of collapse in different hazard levels are also consistent.  相似文献   

2.
The variance of collapse capacity is an important constituent of probabilistic methodologies used to evaluate the probability of collapse of structures subjected to earthquake ground motions. This study evaluates the effect of ground motion randomness (i.e. record‐to‐record (RTR) variability) and uncertainty in the deterioration parameters of single‐degree‐of‐freedom (SDOF) systems on the variance of collapse capacity. Collapse capacity is evaluated in terms of a relative intensity defined as the ratio of ground motion intensity to a structure strength parameter. The effect of RTR variability on the variance of collapse capacity is directly obtained by performing dynamic analyses of deteriorating hysteretic models for a set of representative ground motions. The first‐order second‐moment (FOSM) method is used to quantify the effect of deterioration parameter uncertainty. In addition to RTR variability, the results indicate that uncertainty in the displacement at the peak (cap) strength and the post‐capping stiffness significantly contribute to the variance of collapse capacity. If large dispersion of these parameters exists, the effect of uncertainty in deterioration parameters on the variance of collapse capacity may be comparable to that caused by RTR variability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Incremental dynamic analysis (IDA) has been extended by introducing a set of structural models in addition to the set of ground motion records which is employed in IDA analysis in order to capture record‐to‐record variability. The set of structural models reflects epistemic (modeling) uncertainties, and is determined by utilizing the latin hypercube sampling (LHS) method. The effects of both aleatory and epistemic uncertainty on seismic response parameters are therefore considered in extended IDA analysis. The proposed method has been applied to an example of the four‐storey‐reinforced concrete frame, for which pseudo‐dynamic tests were performed at the ELSA Laboratory, Ispra. The influence of epistemic uncertainty on the seismic response parameters is presented in terms of summarized IDA curves and dispersion measures. The results of extended IDA analysis are compared with the results of IDA analysis, and the sensitivity of the seismic response parameters to the input random variable using the LHS method is discussed. It is shown that epistemic uncertainty does not have significant influence on the seismic response parameters in the range far from collapse, but could have a significant influence on collapse capacity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper develops a modal pushover analysis‐ (MPA) based approximate procedure to quantify the collapse potential of structural systems. The computationally demanding incremental dynamic analysis (IDA) of the structural system is avoided by MPA of the structure in conjunction with empirical equations for the collapse strength ratio for the first‐mode single‐degree‐of‐freedom (SDF) system; higher modes of vibration play essentially no role in estimating the ground motion intensity required to cause collapse of the structure. Presented are collapse fragility curves for 6‐, 9‐, and 20‐story regular special moment‐resisting teel frames computed by the exact and approximate procedures, demonstrating that the MPA‐based approximate procedure requires only a small fraction (1% in one example) of the computational effort inherent in exact IDA and still achieves highly accurate results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This study explores seismic performance of steel frame buildings with SMA-based self-centering bracing systems using a probabilistic approach. The self-centering bracing system described in this study relies on superelastic response of large-diameter cables. The bracing systems is designed such that the SMA cables are always stressed in tension. A four-story steel frame building characterized until collapse in previous research is selected as a case-study building. The selected steel frame building is designed with SMA bracing systems considering various design parameters for SMA braces. Numerical models of these buildings are developed by taking into account the ultimate state of structural components and SMA braces as well as the effect of gravity frames on lateral load resistance. Nonlinear static analyses are conducted to assess the seismic characteristics of each frame and to examine the effect of SMA brace failure on the seismic load carrying capacity of SMA-braced frames. Incremental dynamic analyses (IDA) are performed to compute seismic response of the designed frames at various seismic intensity levels. The results of IDA are used to develop probabilistic seismic demand models for peak inter-story and residual inter-story drifts. Seismic demand hazard curves of peak and residual inter-story drifts are generated by convolving the ground motion hazard with the probabilistic seismic demand models. Results show that steel frames designed with SMA bracing systems provide considerably lower probability of reaching at a damage state level associated with residual drifts compared to a similarly designed steel moment resisting frame, especially for seismic events with high return periods. This indicates reduced risks for the demolition and collapse due to excessive residual drifts for SMA braced steel frames.  相似文献   

7.
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the coll...  相似文献   

8.
Assessment of the seismic performance of existing structures requires due consideration of both aleatory and epistemic sources of uncertainty; the former being typically associated with the randomness in ground motion records and the latter with the uncertainty in numerical modelling. Using a numerical modelling approach calibrated to available experimental test data collected from the literature, the uncertainty associated with different modelling parameters for existing reinforced concrete frames in Italy was quantified via an extensive numerical study. This was done to quantify the propagation of modelling parameter type uncertainty to the overall dispersion of the demand parameters typically used in seismic assessment, namely peak storey drift and peak floor accelerations. In addition, the impact of such modelling uncertainty on the median intensity and dispersion of the collapse fragility function was also examined. From the results of this study, empirical values of modelling parameter uncertainty were quantified with a view to being used in the assessment of existing reinforced concrete frames with masonry infill designed prior to the introduction of seismic design provisions in Italy during the 1970s. Comparing these empirical values to those available in the literature, it is seen how the fundamental behaviour of the frames differs from more modern frames with ductile detailing to the extent that values available in guidelines such as FEMA P58 cannot be reasonably adopted for these structural typologies.  相似文献   

9.
The potential of post-tensioned self-centering moment-resisting frames (SC-MRFs) and viscous dampers to reduce the collapse risk and improve the residual drift performance of steel buildings in near-fault regions is evaluated. For this purpose, a prototype steel building is designed using different seismic-resistant frames, i.e.: moment-resisting frames (MRFs); MRFs with viscous dampers; SC-MRFs; and SC-MRFs with viscous dampers. The frames are modeled in OpenSees where material and geometrical nonlinearities are taken into account as well as stiffness and strength deterioration. A database of 91 near-fault, pulse-like ground motions with varying pulse periods is used to conduct incremental dynamic analysis (IDA), in which each ground motion is scaled until collapse occurs. The probability of collapse and the probability of exceeding different residual story drift threshold values are calculated as a function of the ground motion intensity and the period of the velocity pulse. The results of IDA are then combined with probabilistic seismic hazard analysis models that account for near-fault directivity to assess and compare the collapse risk and the residual drift performance of the frames. The paper highlights the benefit of combining the post-tensioning and supplemental viscous damping technologies in the near-source. In particular, the SC-MRF with viscous dampers is found to achieve significant reductions in collapse risk and probability of exceedance of residual story drift threshold values compared to the MRF.  相似文献   

10.
The effects of structural modeling (bar slip in lap splice), ground motion selection process (epsilon effect) and size of a structure (number of bays and stories) on the fragility of reinforced concrete ordinary moment resisting frames are investigated. An analytical model is developed to account for bar slip in lap splice, which exhibits good correlation with existing experimental data. Then, incremental dynamic analysis is used to derive the fragility curves for four model structures. The model structures simulate frames with a different number of bays and stories. Finally, the fragility curves are corrected for the epsilon effect. The results show that slip in the lap splice can significantly increase the failure probability, especially for the collapse prevention limit state. At the same time, it is found that spectral shape has a significant impact on the fragility curves. It is also found that accounting for or ignoring bar slip or epsilon effects increases the probability of failure for larger structures. This indicates an unconservative bias in the safety of larger structures.  相似文献   

11.
本文主要对增量动力弹塑性分析(IDA)方法的两个方面作了改进:(1)以增量动力弹塑性分析方法的基本原理为基础,以快速非线性时程分析(FNA)方法为计算工具,形成快速增量动力弹塑性分析(FIDA)方法。(2)仅以IDA分析结果为基础,建立地震易损性曲线及地震破坏概率计算的离散型式。为了校验本文方法的可行性与有效性,应用增量动力弹塑性分析、模态增量动力弹塑性分析与快速增量动力弹塑性分析计算一个14层筒中筒结构试验模型,比较了用上述三种方法的计算误差与计算效率,比较了传统方法与本文方法计算该模型结构的地震易损性曲线的差别。  相似文献   

12.
Modelling uncertainty can significantly affect the structural seismic reliability assessment. However, the limit state excursion due to this type of uncertainty may not be described by a Poisson process as it lacks renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties related to ground motion representation by employing recorded ground motions together with modelling uncertainties is not a trivial task. Robust fragility assessment, proposed previously by the authors, employs the structural response to recorded ground motion as data in order to update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural model realizations and as-recorded ground motions. This can reduce the computational effort by more than 1 order of magnitude. However, it should be kept in mind that the fragility concept itself is based on the underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, considering both the uncertainty in ground motion representation based on as-recorded ground motion and non ergodic modelling uncertainties, the error introduced through structural reliability assessment by using the robust fragility is quantified. It is shown through specific application to an existing RC frame that this error is quite small when the product of the time interval and the standard deviation of failure rate is small and is on the conservative side.  相似文献   

13.
The seismic behavior of plane moment‐resisting frames (MRFs) consisting of I steel beams and concrete‐filled steel tube (CFT) columns is investigated in this study. More specifically, the effect of modeling details of each individual component of CFT‐MRFs, such as the composite CFT columns, the beam‐column connections, the panel zones, and the steel I beams on their seismic behavior, is studied through comparisons against available experimental results. Then, fragility curves are constructed for three typical CFT‐MRFs, designed according to European codes, for various levels of modeling sophistication through nonlinear time‐history analyses. On the basis of these fragility curves, one can select the appropriate modeling level of sophistication that can lead to the desired seismic behavior for a given seismic intensity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The study presents probabilistic structural fragility assessment of public school buildings in Istanbul, which were constructed based on a standardized/typical project. The typical structure is a four-story, reinforced concrete shear wall building with moment resisting frames. Derivation of fragility functions rely on nonlinear dynamic analyses through Monte Carlo simulations. Nonlinear dynamic analyses are initially performed for a fully deterministic structural model based on the blueprints of the typical school building project. Uncertainties are introduced in different analysis cases following a modified version of the algorithm presented in Smyth et al. (2004) [21], which considers the effect of the random distribution of the parameters using a Monte Carlo approach. Aleatory uncertainties concerning material properties (i.e. compressive strength of concrete, yield strength of reinforcing steel and concrete density), geometrical characteristics (i.e. span lengths and story heights) and cross sectional dimensions of beams, columns and shear walls as well as epistemic uncertainty in the direction of ground motion excitation are considered. Statistical distributions for the parameters considered are obtained from in-situ measurements and material sampling tests. Fragility functions are produced in terms of peak ground acceleration and velocity as well as of the elastic spectral displacement at the first vibration period of the building. Mean damage ratios are calculated from the derived fragility functions. They are further compared to mean damage ratios calculated for similar building typologies provided in HAZUS-MH technical manual and in Istanbul building inventory.  相似文献   

15.
Seismic fragility can be assessed by conducting incremental dynamic analysis (IDA). This study extends the current conditional mean spectrum (CMS)-based record selection approach for IDA by taking into account detailed seismic hazard information. The proposed method is applied to conventional wood-frame houses in Canada, across which dominant earthquake scenarios and associated hazard levels vary significantly. Effects due to different seismic environments, site conditions, CMS-based record selection methods, and house models are investigated by comparing various seismic fragility models. Moreover, relative impact of the key characteristics is evaluated in terms of seismic loss curve for a group of wood-frame houses. Importantly, a close examination of regional seismic hazard characteristics using seismic hazard curve and seismic deaggregation facilitates the deeper understanding of the impact of ground motion characteristics on seismic fragility. A comprehensive and systematic assessment of key uncertainties associated with seismic fragility is provided.  相似文献   

16.
基于“强柱弱梁”的屈服机制,依据能量平衡方法设计了某6层RC框架结构,采用震级-震中距条带地震动记录选取方法,选取12条随机地震动,利用Perform-3D有限元分析软件对结构进行增量动力(IDA)分析,得到了结构的地震易损性曲线、破坏状态概率曲线以及结构破坏概率矩阵。分析结果表明:该方法设计的结构能够形成预设的“强柱弱梁”屈服机制,可以保证结构中梁充分参与耗能,同时结构具有较强的抗倒塌能力,可以满足“小震不坏,中震可修,大震不倒”的性能要求。  相似文献   

17.
基于增量动力分析(IDA)的倒塌易损性分析方法是评估建筑结构抗地震倒塌能力的精细方法,但分析过程比较繁杂且非常费时。为了较快地评估建筑结构的抗地震倒塌能力,首先利用静力非线性(pushover)分析,获得结构倒塌能力的初步估计值aS*,然后将每个地面运动记录调整到aS*,对结构进行动力时程分析,记录结构的动力时程反应,利用IDA的思想得到结构的中值数倒塌谱强度?CTS。该方法与传统的增量动力分析方法相比较,可提高计算效率,计算精度也满足要求。  相似文献   

18.
A refined probabilistic assessment of seismic demands and fracture capacity of welded column splice (WCS) connections in welded steel moment resisting frames (WSMRFs) is presented. Seismic demand assessment is performed through cloud-based nonlinear time history analysis (NLTHA) for two case-study structures, i.e., a 4- and a 20- story WSMRFs. Results from NLTHA are used to derive fracture fragility of WCS connections. To this aim, the study investigates (1) optimal ground-motion intensity measures for conditioning probabilistic seismic demand models in terms of global (i.e., maximum inter-story drift ratio) and local (i.e., peak tensile stress in the flange of WCSs) engineering demand parameters of WSMRFs; (2) the effect of ground-motion vertical components on the longitudinal flange stress of WCS connections and their resulting fracture fragility; and (3) the effect of WCS capacity uncertainties on the fracture fragility estimates of those connections. For the latter case, an advanced finite element fracture mechanics-based approach proposed by the authors is employed to capture aleatory and epistemic uncertainties affecting fracture capacities. The focus is on pre-Northridge WCS connections featuring partial joint penetration and brittle materials, making them highly vulnerable to seismic fracture. Fracture fragility results for the case-study structures are compared and discussed, highlighting the importance of the considered issues on fragility estimates, particularly in the case of high-rise structures. Findings from the study contribute shedding some light on the influence of seismic demand and capacity uncertainties on the assessment of fracture fragility of WCS connections. These findings can guide similar performance-based assessment exercises for WSMRFs to inform, for instance, the planning and design of retrofitting strategies for those vulnerable connections.  相似文献   

19.
A cloud method for generating percentile engineering demand parameter versus intensity measure(EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis(IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis(SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..  相似文献   

20.
The main objective of the present study is to develop seismic fragility curves of an idealized pile-supported wharf with batter piles through a practical framework. Proposing quantitative limit states, analytical fragility curves are developed considering three engineering demand parameters (EDPs), including displacement ductility factor (µd), differential settlement between deck and behind land (DS) and normalized residual horizontal displacement (NRHD). Analytical fragility curves are generated using the results of a numerical model. So, the accuracy and reliability of resulted fragility curves directly depend on how accurate the seismic demand quantities are estimated. In addition, the seismic performance of pile-supported wharves is highly influenced by geotechnical properties of the soil structure system. Hence, a sensitivity analysis using the first-order second-moment (FOSM) method is performed to evaluate the effects of geotechnical parameters uncertainties in the seismic performance of the wharf.Herein, the seismic performance of the wharf structure is simulated using the representative FLAC2D model and performing nonlinear time history analyses under a suit of eight ground motion records. Incremental dynamic analysis (IDA) is used to estimate the seismic demand quantities. As a prevailing tool, adopted fragility curves are useful to seismic risk assessment. They can also be used to optimize wharf-retrofit methods. The results of sensitivity analysis demonstrate that uncertainties associated with the porosity of loose sand contribute most to the variance of both NRHD and µd. While in the case of differential settlement, the friction angle of loose sand contributes most to the variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号