首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to improve the quality of laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) determination of phosphorus in crystalline quartz. Over the last decade, the Geological Survey of Norway has routinely performed trace element determinations on quartz from both operating and potential quartz deposits by LA‐ICP‐MS. The determined phosphorus concentrations were, with but few exceptions, consistently within the range of 10 to 30 μg g?1, results that seemed to be both too high and too consistent. The multi‐material calibration curve obtained from a suite of reference materials (NIST SRM 610, 612, 614, 1830, BAM No. 1 amorphous SiO2 glass) did not define a precise regression line. Published phosphorus concentrations for the reference materials are poorly constrained and the observed dispersions along the multi‐material calibration curve suggest that some of the reference values may be inaccurate. Furthermore, the calibration curve did not pass through the origin of the [(cps 31P/cps 30Si) · cone. Si] vs. P concentration diagram; thus, in addition to the uncertainties of the literature values of phosphorus, it is difficult to define the calibration curve. Three reference materials (NIST SRM 614, 1830, synthetic quartz KORTH) were sent for phosphorus accelerator implantation, providing an independent and accurate (± 3%) approach for determining phosphorus concentrations in crystalline quartz. The intrinsic phosphorus concentrations of the three implanted samples plus those for NIST SRM 610 and 612 were determined by secondary ion mass spectrometry (SIMS), yielding new phosphorus values for NIST SRM 610, 612, 614 and 1830. Using these new values resulted in a better defined LA‐ICP‐MS calibration curve. However, the source of the ICP‐MS related background could not be defined, such that it must still be empirically corrected for.  相似文献   

2.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

3.
Seven ilmenite (FeTiO3) megacrysts derived from alnöite pipes (Island of Malaita, Solomon Islands) were characterised for their major and trace element compositions in relation to their potential use as secondary reference materials for in situ microanalysis. Abundances of thirteen trace elements obtained by laser ablation ICP‐MS analyses (using the NIST SRM 610 glass reference material) were compared with those determined by solution‐mode ICP‐MS measurements, and these indicated good agreement for most elements. The accuracy of the LA‐ICP‐MS protocol employed here was also assessed by repeated analysis of MPI‐DING international glass reference materials ML3B‐G and KL2‐G. Several of the Malaitan ilmenite megacrysts exhibited discrepancies between laser ablation and solution‐mode ICP‐MS analyses, primarily attributed to the presence of a titano‐magnetite exsolution phase (at the grain boundaries), which were incorporated solely in the solution‐mode runs. Element abundances obtained by LA‐ICP‐MS for three of the ilmenite megacrysts (CRN63E, CRN63H and CRN63K) investigated here had RSD (2s) values of < 20% and therefore can be considered as working values for reference purposes during routine LA‐ICP‐MS analyses of ilmenite.  相似文献   

4.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

5.
Isotope dilution (ID) mass spectrometry is a primary method of analysis suited for the accurate and precise measurement of several trace elements in geological matrices. Here we present mass fractions and respective uncertainties for Cr, Cu, Ni, Sn, Sr and Zn in 10 silicate rock reference materials (BCR‐2, BRP‐1, BIR‐1, OU‐6, GSP‐2, GSR‐1, AGV‐1, RGM‐1, RGM‐2 and G‐3) obtained by the double ID technique and measuring the isotope ratios with an inductively coupled plasma‐mass spectrometer equipped with collision cell. Test portions of the samples were dissolved by validated procedures, and no further matrix separation was applied. Addition of spikes was designed to achieve isotope ratios close to unity to minimise error magnification factors, according to the ID theory. Radiogenic ingrowth of 87Sr from the decay of 87Rb was considered in the calculation of Sr mass fractions. The mean values of our results mostly agree with reference values, considering both uncertainties at the 95% confidence level, and also with ID data published for AGV‐1. Considering all results, the means of the combined uncertainties were < 1% for Sr, approximately 2% for Sn and Cu, 4% for Cr and Ni and almost 6% for Zn.  相似文献   

6.
We present new reference values for nineteen USGS, GSJ and GIT‐IWG rock reference materials that belong to the most accessed samples of the GeoReM database. The determination of the reference values and their uncertainties at the 95% confidence level follows as closely as possible ISO guidelines and the Certification Protocol of the International Association of Geoanalysts. We used analytical data obtained by the state‐of‐the‐art techniques published mainly in the last 20 years and available in GeoReM. The data are grouped into four categories of different levels of metrological confidence, starting with isotope dilution mass spectrometry as a primary method. Data quality was checked by careful investigation of analytical procedures and by the application of the Horwitz function. As a result, we assign a new and more reliable set of reference values and respective uncertainties for major, minor and a large group of trace elements of the nineteen investigated rock reference materials.  相似文献   

7.
Two Co‐rich seamount crust reference materials, MCPt‐1 and MCPt‐2, were prepared using ultra‐fine particle size milling technique and characterised for the platinum‐group elements (PGEs). The raw material for these two reference materials was collected separately from the Magellan seamounts of the western Pacific Ocean and the seamounts of the central Pacific Ocean by Russian and Chinese scientists. First, they were ground by ball mill to a ?200 mesh powder, then further processed by ultra‐fine jet mill and well‐mixed. The particle size distributions of the samples were tested by a laser particle analyser; the average particle size was 1.8 and 1.5 μm (equal to about 2000 mesh) respectively. The homogeneity of six major and minor elements in these two materials was tested at the milligram level of sampling mass by high‐precision wavelength dispersive X‐ray fluorescence (XRF) spectrometry and at the microgram level of sampling mass by electron probe microanalyser. The homogeneity of more than forty trace elements, including Pt, was tested at the microgram level of sampling mass by LA‐ICP‐MS. Except for Rh, all PGEs were determined by isotope dilution‐ICP‐MS. Platinum in MCPt‐1 and MCPt‐2 was characterised as certified values, whereas the other five PGEs in MCPt‐1 and MCPt‐2 were reported as reference values. In addition, the information values of sixty‐two major, minor and trace elements were obtained by XRF, ICP‐AES and ICP‐MS. The minimum sampling mass for the determination of PGEs was 1 g, while the minimum sampling mass for the determination of the other elements was 2–5 mg.  相似文献   

8.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

9.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

10.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   

11.
Iron formations (IFs) typically contain low mass fractions of most trace elements, including the rare earth elements (REE), and few publications describe analytical methods dedicated to this matrix. In this study, we used bomb and table‐top acid dissolution procedures and ICP‐MS to determine the mass fractions of trace elements in IF reference materials FER‐1, FER‐2, FER‐3, FER‐4 and IF‐G. The full digestion of the IF samples with the bomb procedure required the addition of a small amount of water together with the acids. The results obtained by this method mostly agreed statistically with published values. The most remarkable exception was the higher values obtained for the heavy REE in FER‐3. The recoveries of the REE obtained with the table‐top procedure were slightly higher than those of the bomb digestion, except for the values of the heavy REE in FER‐3 and FER‐4, which were up to 30% lower than published values. Sintering of the samples with sodium peroxide was performed to determine the REE, but the results tended to be lower than those derived following acid digestion. On the whole, the recoveries showed dependence on the conditions of digestion, but subtle differences in trace mineral composition between samples also exerted influence on the analytical results for trace elements.  相似文献   

12.
Experimental determination of the pressure and temperature controls on Ti solubility in quartz provides a calibration of the Ti‐in‐quartz (TitaniQ) geothermometer applicable to geological conditions up to ~ 20 kbar. We present a new method for determining 48Ti mass fractions in quartz by LA‐ICP‐MS at the 1 μg g?1 level, relevant to quartz in HP‐LT terranes. We suggest that natural quartz such as the low‐CL rims of the Bishop Tuff quartz (determined by EPMA; 41 ± 2 μg g?1 Ti, 2s) is more suitable than NIST reference glasses as a reference material for low Ti mass fractions because matrix effects are limited, Ca isobaric interferences are avoided, and polyatomic interferences at mass 48 are insignificant, thus allowing for the use of 48Ti as a normalising mass. Average titanium mass fraction from thirty‐three analyses of low temperature quartz from the Czech Erzgebirge is 0.9 ± 0.2 μg g?1 (2s) using 48Ti as a normalising mass and Bishop Tuff quartz rims as a reference material. The 2s average analytical uncertainty for individual analyses of 48Ti is 8% for 50 μm spots and 7% for 100 μm spots, which offers much greater accuracy than the 21–41% uncertainty (2s) incurred from using 49Ti as an analyte.  相似文献   

13.
To test whether the silicate reference glasses BAM‐S005‐A and BAM‐S005‐B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA‐ICP‐MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM‐S005‐A and BAM‐S005‐B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA‐ICP‐MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty‐two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications.  相似文献   

14.
We present a revised alkali fusion method for the determination of trace elements in geological samples. Our procedure is based on simple acid digestion of powdered low‐dilution (flux : sample ≈ 2 : 1) glass beads where large sample dilution demanded by high total dissolved solids, a main drawback of conventional alkali fusion, could be circumvented. Three geological reference materials (G‐3 granite, GSP‐2 granodiorite and SGD‐1a gabbro) decomposed by this technique and routine tabletop acid digestion were analysed for thirty trace elements using a quadrupole ICP‐MS. Results by conventional acid digestion distinctly showed poor recoveries of Zr, Hf and rare earth elements due to incomplete dissolution of resistant minerals. On the other hand, results obtained by our method were in reasonable agreement with reference data for most analytes, indicating that refractory minerals were efficiently dissolved and volatile loss was insignificant.  相似文献   

15.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

16.
Geological reference materials (RMs) with variable compositions and NIST SRM 612 were analysed by isotope dilution mass spectrometry for bulk rock concentrations of chalcogen elements (sulfur, selenium and tellurium), rhenium and platinum‐group elements (PGEs: Ru, Pd, Os, Ir and Pt), including the isotope amount ratios of 187Os/188Os. All concentrations were obtained from the same aliquot after HCl‐HNO3 digestion in a high pressure asher at 320 °C. Concentrations were determined after chemical separation by negative TIMS, ICP‐MS and hydride generation ICP‐MS (Se, Te). As in previous studies, concentrations of the PGEs in most RMs were found to be highly variable, which may be ascribed to sample heterogeneity at the < 1 g level. In contrast, S, Se and Te displayed good precision (RSD < 5%) in most RMs, suggesting that part of the PGE budget is controlled by different phases, compared with the chalcogen budget. The method may minimise losses of volatile chalcogens during the closed‐system digestion and indicates the different extent of heterogeneity of chalcogens, Re and PGEs in the same sample aliquot. OKUM, SCo‐1, MRG‐1, DR‐N and MAG‐1 are useful RMs for the chalcogens. NIST SRM 612 displays homogenous distribution of S, Se, Te, Pt and Pd in 30 mg aliquots, in contrast with micro‐scale heterogeneity of Se, Pd and Pt.  相似文献   

17.
In this study, a technique for high precision in situ Fe and Mg isotope determinations by femtosecond‐laser ablation‐multi collector‐ICP‐MS (fs‐LA‐MC‐ICP‐MS) was developed. This technique was employed to determine reference values for a series of common reference glasses that may be used for external standardisation of in situ Fe and Mg isotope determinations in silicates. The analysed glasses are part of the MPI‐DING and United States Geological Survey (USGS) reference glass series, consisting of basaltic (BIR‐1G, BCR‐2G, BHVO‐2G, KL2‐G, ML3B‐G) and komatiitic (GOR128‐G and GOR132‐G) compositions. Their Fe and Mg isotope compositions were determined by in situ fs‐LA‐MC‐ICP‐MS and by conventional solution nebulisation multi‐collector ICP‐MS. We determined δ56Fe values for these glasses ranging between ‐0.04‰ and 0.10‰ (relative to IRMM‐014) and δ26Mg values ranging between ‐0.40‰ and ‐0.15‰ (relative to DSM‐3). Our fs‐LA‐MC‐ICP‐MS results for both Fe and Mg isotope compositions agreed with solution nebulisation analyses within analytical uncertainties. Furthermore, the results of three USGS reference glasses (BIR‐1G, BHVO‐2G and BCR‐2G) agreed with previous results for powdered and dissolved aliquots of the same reference materials. Measurement reproducibilities of the in situ determinations of δ56Fe and δ26Mg values were usually better than 0.12‰ and 0.13‰ (2s), respectively. We further demonstrate that our technique is a suitable tool to resolve isotopic zoning in chemically‐zoned olivine crystals. It may be used for a variety of different applications on isotopically‐zoned minerals, e.g., in magmatic or metamorphic rocks or meteorites, to unravel their formation or cooling rates.  相似文献   

18.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

19.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   

20.
The influence of the mixtures HF‐HNO3 and HF‐NH4F‐HNO3 in bomb digestion for trace element determination from different rock types was studied using ICP‐MS. It is shown that the HF concentration, not the ratio of reagents in the decomposing mixture, controls the digestion process of a rock. Data for Zr in the granite G‐2 as a function of HF concentration gave the same results as reaction mixtures of various compositions. A complete digestion in 50‐mg sample bombs was achieved by 1.0 ml of HF alone, or with a mixture of other acids at a HF concentration of at least 35% m/m at 196 °C over 18 h. The results of the analysis of basalts BCR‐1, BIR‐1, mica schist SDC‐1, shale SBC‐1, granites G‐2, SG‐1A, garnet‐biotite plagiogneiss GBPg‐1, rhyolite RGM‐1, granodiorite GSP‐1, trachyandesite MTA‐1 and rhyolite MRh‐1 are given and compared against available data. The reproducibility of the element determinations by ICP‐MS and XRF as an independent non‐destructive analysis for a quality check in the range of concentrations typical for routine rock samples is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号