首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The currently available empirical scaling laws for estimation of spectral amplitudes are limited to periods longer than 0–04 s. However, for design of equipment and stiff structures on multiple and distant supports, exposed to strong shaking near faults where peak accelerations can exceed 1g, specification of design ground motions at higher frequencies is required. This paper presents a method for extrapolation of pseudo-relative velocity spectral amplitudes of strong earthquake shaking to short periods (0–01 < T < 0–04 sec). The extrapolated spectra can be used as a physical basis for defining design spectral amplitudes in this higher-frequency range. The analysis in this paper implies that for typical strong motion accelerations, particularly on sedimentary sites in California, the peak ground accelerations are projected to be unaffected by frequencies higher than those recorded. Consequently, in California, the high-frequency pseudo-acceleration spectra can be approximated from the recorded absolute peak accelerations.  相似文献   

2.
A method for generating synthetic strong motion accelerograms for use in engineering design is presented. This method utilizes the model proposed by Trifunac in 197127 in conjunction with the recent empirical scaling functions for characterization of amplitudes and duration of strong shaking in terms of (i) earthquake magnitude, M, and epicentral distance, R, or (ii) Modified Mercalli Intensity (MMI) at the recording station. The method also enables one to consider the desired levels of confidence that the synthetic motion will not be exceeded, direction of ground motion (horizontal or vertical) and the dispersive properties of geologic environment beneath and surrounding the station. The principal features of this approach are that the resulting accelerograms have non-stationary frequency and amplitude characteristics which are in full agreement with known principles of wave propagation through a stratified medium, and that the Fourier amplitudes and the frequency-dependent duration are scaled in accordance with known trends as in recorded accelerograms.  相似文献   

3.
New empirical scaling equations of Fourier amplitude spectra of strong earthquake shaking are presented for the site characterization in terms of local geologic and local soil conditions simultaneously. It is shown that using only the local soil site classification may lead to biased results, and it is suggested that both soil and geologic conditions should be used together in estimation of the site specific spectrum amplitudes.  相似文献   

4.
Empirical scaling equations of Fourier spectrum amplitudes in terms of the Modified Mercalli Intensity (MMI), local soil conditions (‘rock’, stiff soil, and deep soil), and local geologic conditions (depth of sediments) are presented. It is shown that both soil and geological site effects should be used together in estimation of the site specific Fourier amplitude spectra.  相似文献   

5.
This paper presents a technique to reproduce compatible seismogran3s involving permanent displacen3ent effects at sites close to the fault source. A multi-objective evolutionary algorithm is used to minimize the differences between the response spectra and multi-tapered power spectral delsilies corresponding to the recorded and simulated wavelbrms. The multi-taper method is used to reduce the spectral leakage that is inherent in the Fourier rams formed form ofwavelbrms, ieading to a reduction of variance in power spectral amplitudes, thus permitting the calibration of the two sets of data. The technique is implemented using the 1998-Fandoqa (lran) earthquake data and the results are compared with the actual observed data. Additionally, a comparison is made with a SAR interfcrometry study leading to fair agreement with the reported dislocation along the main fault. The simulation procedure and results are discussed and assessed concluding that, although the technique may be associated with uncertainties, it can still be used to reproduce wavelbnns at near source sites that include permanent dislocation, and can be used for seismic pertbrmance evaluation of structures in the region under study.  相似文献   

6.
Empirical scaling equations for Fourier amplitude spectra of strong ground motion are used to describe A0 and τ in the assumed (high-frequency) shape of strong motion amplitudes: FS(φ) = A0e-πτφ. The res of computed A0 and τ with other related estimates of spectral amplitudes; (2) smooth decay of strong motion spectral amplitudes up to φ = 25 Hz, without an abrupt low-pass filtering of high frequecies; and (3) good agreement with other estimates of the regionally specific attenuation of high-frequncy seismic waves.As the recorded strong earthquake shaking in the western United States typically samples only the shallow (10 km) and local (100km) characteristics of wave attenuation, the processed strong motion accelerograms can be used as the most direct means of describing the nature of the high-frequency attenuation of the entire strong motion signal for use in earthquake engineering applications. Seismological body wave, Lg and coda wave estimates of Q sample different volumes of the crust surrounding the station, and involve different paths of the waves. These differences must be carefully documented and understood before the results can be used in earthquake engineering characterization of strong motion amplitudes.  相似文献   

7.
We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i.e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1–50?Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of Mw 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions.  相似文献   

8.
Prephotographic depictions of earthquakes can contain important information on the types and amount of damage due to a large earthquake in historic times. Care must be used in evaluating such depictions because some are more accurate than others, and many depictions contain little that is of value in making estimates of seismic intensity. Depictions of two earthquakes, in 1692 at Jamaica and in 1843 at Guadeloupe, illustrate the utility of depictions in intensity estimation. A depiction of the scene at Port Royal in Jamaica of the 1692 shock suggests that the major damage was caused by soil slumping and a tsunami, with the ground shaking itself probably only having been about MMI VII. Two depictions of Pointe-à-Pitre at Guadeloupe after the 1843 event contain evidence that the town was damaged by strong ground shaking as well as by major soil failures. The ground shaking here was probably MMI VII–IX. These and other pictures are being assembled for a monograph of prephotographic earthquake depictions in the Americas.  相似文献   

9.
First frequency-dependent empirical scaling equations of pseudo-relative velocity spectral amplitudes (PSV) of strong earthquake ground motions in the former Yugoslavia were introduced in the mid-1990s by Lee and Trifunac (1990) [15]. This followed the development of the Fourier spectral amplitudes (FS) scaling equations by Lee and Trifunac (1993) [17] in terms of earthquake source parameters, and the region-specific frequency dependent attenuation function given by Lee and Trifunac (1992) [16]. More recently, a new frequency-dependent attenuation function was developed for central and eastern Serbia for earthquakes of intermediate and large magnitudes and for large epicentral distances—exceeding 300 km—suggested by Lee et al. (2016) [19] that occur in the Vrancea source region in Romania. In this paper we use this frequency-dependent attenuation function to develop empirical scaling equations for PSV spectral amplitudes in Serbia. These scaling equations will form a basis for macro- and micro-zoning earthquake hazard studies in Serbia.  相似文献   

10.
Fourier spectrum amplitudes of horizontal and vertical earthquake accelerations recorded at the foundation levels of 57 buildings in the Los Angeles metropolitan area have been used to study the dependence of spectral amplitudes on the building foundation sizes. Comparison of these amplitudes with those predicted by empirical models for scaling ‘free field’ Fourier amplitude spectra does not indicate any significant dependence of the spectral amplitudes on the size of the foundation. Third degree polynomials have been employed to smooth the spectra of the accelerations recorded inside the buildings and their coefficients have been examined as functions of the foundation plan dimensions. These results also indicate no significant dependence of the spectral amplitudes on the foundation dimensions. A qualitative analysis of the spectral amplitudes for possible effects caused by the phenomena associated with soil-structure interaction indicates that the Fourier spectra of the recorded accelerations may experience some amplification as the relative ‘density’ of the foundation-structure system increases.  相似文献   

11.
The main-shock (Mw, 6.3) and the aftershocks of the ‘Les Saintes’ earthquake sequence (French Indies) were analyzed to quantify high-frequency directivity effects. A correction method was applied to isolate source spectra within a large frequency range (0.5 to 25 Hz). Most of the aftershocks source spectra are fully consistent with a Brune spectrum point-source shape and do not show any azimuthal dependence. The main-shock (Mw, 6.3) and the two largest aftershocks (Mw, 5.8, 5.3) show, however, a clear azimuthal dependence that indicates significant directivity effect. The discrepancy of the radiated spectral energy and the change in the corner frequencies introduced by directivity effects show that such an effect is significant at high frequency (from 1 to 25 Hz). Our data suggest that the amplitudes in the main-shock Fourier spectrum at directive sites are around a factor of 2.5 higher with respect to anti-directive sites.  相似文献   

12.
Accurate estimates of the ground motions that occurred during damaging earthquakes are a vital part of many aspects of earthquake engineering, such as the study of the size and cause of the uncertainties within earthquake risk assessments. This article compares a number of methods to estimate the ground shaking that occurred on Guadeloupe (French Antilles) during the 21st November 2004 (M w 6.3) Les Saintes earthquake, with the aim of providing more accurate shaking estimates for the investigation of the sources of uncertainties within loss evaluations, based on damage data from this event. The various techniques make differing use of the available ground-motion recordings of this earthquake and by consequence the estimates obtained by the different approaches are associated with differing uncertainties. Ground motions on the French Antilles are affected by strong local site effects, which have been extensively investigated in previous studies. In this article, use is made of these studies in order to improve the shaking estimates. It is shown that the simple methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar to those predicted by empirical ground-motion models and that these are uniform across the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take account of the spatial correlation in motions demonstrate that shaking within roughly 10 km of a recording station (covering a significant portion of the investigated area) can be defined with reasonable accuracy but that motions at more distant points are not well constrained.  相似文献   

13.
The intensity scales in different forms provide valuable information on regional earthquake effects. In this paper, a theoretical model which has been developed recently for seismic intensity estimation is re-examined by employing strong motion records from ten Iranian earthquakes. The analysis results confirmed the capability of the implemented method to estimate the seismic intensity in terms of the MMI scale based on a Fourier spectrum in the study area. The predicted intensity values were compared with another technique utilizing peak ground velocity (PGV) as a predictor. To reveal the high potential of the adopted approach, the theoretical isoseismal map was developed for the 1978 Tabas, Iran earthquake (Mw = 7.4) based on a stochastic finite-fault modelling of ground motions. Results showed good compatibility of predicted intensity values while the historical earthquake records are not enough for a given site.  相似文献   

14.
In many parts of the world, subjectively based earthquake intensity scales similar to those of the Modified Mercalli Intensity (MMI) are applied regularly. Although the characteristics of these scales are quite similar, it is often difficult to convert an estimate of strong ground shaking measured by the MMI scale into its equivalent on other scales. In this paper, an instrumental correlation of the Japanese Intensity scale (JMA) with the MMI scale is described. Currently, one common yardstick that is available for both Japan and the United States is the statistic of peak accelerations. The correlation is done by comparing the JMA for sites where the ‘peak acceleration’ is known in Japan with the MMI for sites in the United States where the peak acceleration is also known. To ensure a direct correspondence of peak accelerations in these two countries, the peak values recorded in the U.S. are corrected by determining the peak acceleration as recorded by the Japanese accelerograph, the SMAC, while it is subjected to the excitation recorded in the United States.  相似文献   

15.
This paper analyses the processes which govern structural response, and uses observations of strong earthquake ground motion to propose quantitative extrapolation of pseudo relative velocity spectral amplitudes to long (100 > T > 1 s) periods. This will eliminate the current difficulties with rough estimation of long period spectral amplitudes and will open new possibilities by enabling the strong motion hazard calculations to be extended to the same long period band. So far, the scaling equations of response spectrum amplitudes have been valid only up to periods less than several seconds. The design of long structures and of structures on multiple distant supports requires knowledge and specification of design ground motions well beyond 1–10 s periods. With the results presented in this paper it will be possible to compute site-specific uniform hazard spectra and associated synthetic accelograms for essentially all long period response problems.  相似文献   

16.
A brief review of proposed correlations between peak accelerations and earthquake magnitude and distance has been presented. It has been found that most investigators agree favourably on what should be the amplitude of peak accelerations for the distance range between about 20 and 200 km. For distances less than 20 km, there is significant disagreement in the predicted peak amplitudes, reflecting the lack of data there and the uncertainties associated with the extrapolation. Correlations of peak accelerations, peak velocities and peak displacements with earthquake magnitude, epicentral distance and the geologic conditions of the recording sites have been presented for 187 accelerograms recorded during 57 earthquakes. This data set describes strong earthquake ground motion in the Western United States during the period from 1933 to 1971. For large earthquakes, dependence of peak acceleration, velocity and displacement amplitudes on earthquake magnitude seems to be lost. This suggests that the amplitudes of strong ground motion close to a fault are scaled primarily by the maximum dislocation amplitudes and the stress drop, rather than the overall ‘size’ of an earthquake as measured by magnitude. The influence of geologic conditions at the recording station seems to be of minor importance for scaling peak accelerations, but it becomes noticeable for the peaks of velocity and even more apparent for the peaks of displacement.  相似文献   

17.
This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containing regional site and an all-clay site.Comparative analyses of the test results show that the pore water pressures in sand-soil layers of the regional site initially increase and then decrease as the amplitudes of the seismic accelerations increase.The actions of the vertical and vibrational seismic waves contribute to greater pore water pressures.The amplification coefficient of the sand-layer regional site becomes smaller as the seismic waves grow stronger,so that both sites are capable of filtering high frequencies and amplifying low frequencies of seismic waves.This is more apparent with the increase in the peak value of the acceleration,and the natural vibration frequencies of both sites decrease with the transmission of the seismic waves from the basement to the ground surface.The decreasing frequency value of the sand-containing regional site is smaller than that of the all-clay site.  相似文献   

18.
利用震源距23 km范围内观测的2000年姚安MS65地震余震记录,计算了震源及近邻区域的尾波规一直达S波在频率15~20 Hz之间的傅里叶谱振幅.结果显示谱振幅随震源距增大而增大, 在对谱振幅进行了震源辐射方向性校正之后, 才出现谱振幅随震源距衰减的现象.由此获得了震源及近邻区域S波的Q(f)值,可表示为QS(f)=89f098其值比由尾波得出的姚安地区的平均QC(f)值低得多,表明了震源破裂带的强烈非均匀性对QS(f)的重大影响.  相似文献   

19.
In this paper, probability distribution functions are derived for the order statistics of various functionals of strong ground motion at a site. These functionals can be: Modified Mercalli Intensity (MMI), peak ground acceleration (PGA), Fourier spectral amplitudes of acceleration, response spectrum amplitudes (spectral displacement, pseudo-spectral velocity and pseudo-spectral acceleration), and amplitudes of the peaks (local maxima and local minima) in the time historyof the response of SDOF and MDOF structures at the site. Three parameters of the response of a structure are considered: displacement, shear force and bending moment at each level (storey) of the structure. The earthquake sources contributing to the risk of ground motion at the site are a number of point, area or volume sources, each with defined frequency of occurence-magnitude relationship. The magnitudes of the possible events at these sources are discretized, and the occurrence of events of different magnitudes are assumed to be statistically independent. For each magnitude, it is assumed that the eartquakes occur in a Poissonian sequence or in a renewal process which is a generalization of the Poissonian. For these assumptions, the probability distribution functions are presented for the number of earthquakes, n, during which a given level of site or structural response is exceeded during the exposure time, and for the return period of the exceedances. For example, for single-degree- of-freedom: (SDOF) or multi-degree-of-freedom structures, (MDOF) n can be the number of earthquakes during which the response of a storey will exceed a given level at least m times(m = 1, 2, 3,…) during the exposure time. These probability distribution functions can be used to extend the concept of uniform probability functionals to more than one exceedance. A more important application is to generalize the uniform probability functionals method of site response (uniform probability Fourier or response spectra) to uniform probability envelopes of displacement, shears and bending moments of a given structure. The uniform probability envelopes can be for exceedance at least once during at least one earthquake, or, in general, for exceedance at least m times per earthquake (m = 1, 2,…) during at least n earthquakes. In other words, during at least n earthquakes at least m peaks in the response can be higher than the specified level. Such uniform probability envelopes can be used (1) to define new design guidelines for building codes based on cost-benefit analysis; (2) to construct more refined probability distribution functions for the damage and total economic losses caused by earthquakes; and (3) to develop planning and decision strategies on strengthening and retrofitting existing buildings.  相似文献   

20.
The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1–2 to 7–10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号