首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The traditional construction of masonry infills adjacent to RC structural elements is still widely adopted in European countries, including seismically active regions. Given the repeated field observations from damaging earthquakes, pointing to unacceptably high levels of masonry infill damage, the present study is motivated by the need to improve further the European seismic design approach for new RC structures with masonry infills, in order to exclude the poor seismic behaviour probably caused by deficiencies in the verification procedure. Since the in-plane damage to non-structural panels is commonly controlled through the limitation of inter-storey drifts, the possibility to introduce more effective verification criteria, accounting for structural properties, infill layouts and masonry properties is explored. Therefore, starting from the assumption that analyses and verifications in the design of buildings are commonly accomplished neglecting the presence of infills, results of extensive nonlinear numerical analyses for different building configurations are examined. As a result, a simplified procedure for the prediction of expected inter-storey drifts for infilled structures, based on the corresponding demands of bare configurations, in function of a simple parameter accounting for structural properties and the presence of infills, is introduced. Possible implications of the proposed approach aimed at the improvement of the current design provisions are discussed.  相似文献   

2.
Unreinforced Masonry(URM) is the most common partitioning material in framed buildings in India and many other countries.Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction,the general design practice is to treat infills as nonstructural elements and their stiffness,strength and interaction with the frame is often ignored,primarily because of difficulties in simulation and lack of modeling guidelines in design codes.The Indian Standard,like many other national codes,does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames.This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills.Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered.HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames.The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.  相似文献   

3.
Unreinforced masonry infill walls are widely used as non-structural partitions in RC frames. The effects of infills on the structural responses are often ignored in the design process since they are generally considered as expendable elements. However, recent studies have shown that not only shear damage can be inflicted to the columns braced by the infill walls, but also that the structural stability can be jeopardised by the fall-off of the infills. This paper presents the development of new detailing methods for the infill walls, which features slit panels, isolation gaps between the infills and columns, and anchorage of the infills. The proposed detailing methods were tested and verified experimentally using shake-table tests on five 1/3-scale infilled RC frame specimens with different combinations of the features stated above. The design and construction of the shake-table test specimens have taken into account the similitude requirements. The test results indicate that the proposed detailing method effectively reduced the undesirable interaction between column and infill walls. And the use of proper anchorage could prevent the fall off of infills from the bounding frame. Furthermore, the specimens with slit infill walls displayed better seismic performances, which could be attributed to the rocking behaviour of the sub-panels with increased aspect ratios.  相似文献   

4.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Several factors influence the behaviour of infilled frames, which have been a subject of research in the past with moderate success. The new generation of European design standards imposes the need to prevent brittle collapse of the infills and makes the structural engineer accountable for this requirement, yet it fails to provide sufficient information for masonry infills design. Therefore, the present work aims at understanding the seismic behaviour of masonry infill walls within reinforced concrete frames, using both unreinforced and reinforced solutions (bed joint reinforcement and reinforced plaster). For this purpose, three reinforced concrete buildings with different infill solutions were constructed at a scale of 1:1.5, all with the same geometry, and were tested on the shaking table of the National Laboratory for Civil Engineering, Portugal. All solutions performed adequately for the design earthquake, with no visible damage. Still, the experimental tests show that the double‐leaf‐unreinforced infill walls underperformed during a large earthquake, collapsing out of plane by rotating as rigid bodies with multiple configurations. Also the reinforced concrete buildings collapsed, because of the adverse interaction with the infill walls. The infill walls with bed joint reinforcement and reinforced plaster did not collapse out of plane, because of their connection to the concrete frame, which is an essential requirement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Seismic fragility of lightly reinforced concrete frames with masonry infills is assessed through numerical simulations considering uncertainty in ground motion and building materials. To achieve this aim, a numerical model of the components is developed, a rational approach to proportion and locate individual struts in the equivalent three‐strut model is proposed, and an explicit nonlinear column shear response model accounting for the infill–column interaction and soft‐story mechanism is employed. The proposed numerical model is used to (1) generate probabilistic seismic demand models accounting for a wide range of ground motion intensities with different frequency content and (2) determine limit state models obtained from nonlinear pushover analysis and incremental dynamic analysis. Using the demand and limit state model, fragility curves for the masonry‐infilled frames are developed to investigate the impact of various infill properties on the frame vulnerability. It is observed that the beneficial effect of the masonry infill diminishes at more severe limit states because of the interaction with the boundary frame. In some cases, this effect almost vanishes or switches to an adverse effect beyond a threshold of ground motion intensities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this study is to investigate the effect of masonry infills on the seismic performance of low‐rise reinforced concrete (RC) frames with non‐seismic detailing. For this purpose, a 2‐bay 3‐storey masonry‐infilled RC frame was selected and a 1 : 5 scale model was constructed according to the Korean practice of non‐seismic detailing and the similitude law. Then, a series of earthquake simulation tests and a pushover test were performed on this model. When the results of these tests are compared with those in the case of the bare frame, it can be recognized that the masonry infills contribute to the large increase in the stiffness and strength of the global structure whereas they also accompany the increase of earthquake inertia forces. The failure mode of the masonry‐infilled frame was that of shear failure due to the bed‐joint sliding of the masonry infills while that of the bare frame appeared to be the soft‐storey plastic mechanism at the first storey. However, it is judged that the masonry infills can be beneficial to the seismic performance of the structure since the amount of the increase in strength appears to be greater than that in the induced earthquake inertia forces while the deformation capacity of the global structure remains almost the same regardless of the presence of the masonry infills. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Recent seismic events have provided evidence that damage to masonry infills can lead not only to large economic losses but also to significant injuries and even fatalities. The estimation of damage of such elements and the corresponding consequences within the performance‐based earthquake engineering framework requires the construction of reliable fragility functions. In this paper, drift‐based fragility functions are developed for in‐plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry infills with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading. Three damage states associated with the structural performance and reparability of masonry infill walls are defined. The effect of mortar compression strength, masonry prism compression strength, and presence of openings is evaluated and incorporated for damage states where their influence is found to be statistically significant. Uncertainty due to specimen‐to‐specimen variability and sample size is quantified and included in the proposed fragility functions. It is concluded that prism strength and mortar strength are better indicators of the fragility of masonry infills than the type of bricks/blocks used, whose influence, in general, is not statistically significant for all damage states. Finally, the presence of openings is also shown to have statistically relevant impact on the level of interstory drift ratio triggering the lower damage states.  相似文献   

9.
Reinforced concrete (RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels and frames. This paper presents an extensive case study of existing RC buildings in Nepal. Non-linear analyses were performed on structural models of the buildings considered as a bare frame and with masonry infill, in order to evaluate the influence of infill walls on the failure mechanisms. Five three-storey buildings with different structural configurations and detailing were selected. The effect of masonry infill panels on structural response was delineated by comparing the bare-framed response with the infill response. Seismic performance is evaluated with regard to global strength, stiffness, energy dissipation, inter-storey drift, and total deflection of the structure. A parametric analysis of structures with masonry infill is also performed. For this, the influence of different material properties is studied, namely diagonal compressive stress, modulus of elasticity and tensile stress of masonry infill panels. Study results show that masonry infill increases the global strength and stiffness of the structures; it decreases the inter-storey drift and hence the total displacement of the structure. The results quantify the influence of the infill panels on structural response and, in particular, the effect of the diagonal compressive strength of the masonry wall.  相似文献   

10.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The vulnerability of infilled frames represents a critical issue in many regions with high seismicity around the world where infills are typically made of heavy masonry as they are used for thermal control of the buildings because of their thermal inertia. In this context, the use of earthen masonry infills can give a superior performance because of their ability to regulate thermal‐hygrometric performance of the building and sustainability of its life‐cycle. This paper presents a numerical study on the seismic behaviour of infill walls made of earthen masonry and partitioned with horizontal wooden planks that allow the relative sliding of the partitions. The combination of the deformability of earthen masonry and the sliding mechanism occurring along the wooden planks gives a high ductility capacity to the in‐plane response of the infill and, at the same time, significantly reduces its stiffness and strength, as compared with traditional solid infills made of fired clay units. As a result, the detrimental interaction with the frame and the damage in the infill when subjected to in‐plane loading can be minimized. The numerical model is validated with results from an experimental study and is used to perform a parametric analysis to examine the influence of variations in the geometry and mechanical properties of the infill walls, as well as the configuration of the sliding joints. Based on the findings of this study, design guidelines for practical applications are provided, together with simple formulation for evaluating their performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Unreinforced masonry infills are widely used in many parts of the world and it is common practice for seismic design to use simplified methods that usually do not take into account the interaction between the infill and the structure. Starting from the 1950s, many researchers have investigated the lateral response of masonry infills focusing on several different topics. The scientific interest on masonry infills is continuously raising due to the unsatisfactory seismic response of the infilled frame structures observed during post-event inspections and to the difficulty to contrive a widely scientifically and practical recognized solution. Although some modern codes consider the presence of infills with some specifications to prevent damage in the masonry panels and global and local effects on the structure, an effective evaluation of these detrimental effects has not been achieved yet. Within this paper, a FEM simulation of in-plane pseudo-static cyclic tests on a RC frame specimen infilled with unreinforced Autoclaved Aerated Concrete (AAC) masonry infill has been performed in order to study accurately the influence and the interaction of the infill with the RC structure. The experimental results performed by Calvi and Bolognini (J Earthq Eng 5:153–185, 1999), and Penna and Calvi (Campagna sperimentale su telai in c.a. con tamponamenti in Gasbeton (AAC) con diverse soluzioni di rinforzo” (in Italian), 2006) on one-bay one-storey full scale specimens are taken as reference. Non-linear static analyses using a “meso-modelling” approach have been carried out. The masonry used in the model has been calibrated according to tests of mechanical characterization and to in-plane cyclic tests on load-bearing AAC masonry conducted by Costa et al. (J Earthq Eng 15:1–31, 2011). The analyses performed have allowed to investigate the local effects on the frame and, in particular, the changes in the moment and shear demands on the RC elements due to the presence of the AAC infill in comparison with the ones in the bare structure, and to estimate the thrust and the contact length activated by the infill on the frame.  相似文献   

13.
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration-and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or near-collapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.  相似文献   

14.
The recent large interest in nonlinear seismic analysis methods, static and dynamic, has required proper strategies of modeling based on reliable, and at the same time easy to use, constitutive laws for the structural elements. Regarding the behavior of framed structures, special attention has to be devoted to infills because of the key role they play in modifying overall stiffness, strength and ductility under seismic excitation. Pointing out the attention on this topic the paper discusses a criteria for modeling the structural behavior of infills based on a macromodeling approach, that is to say on the substitution of infills with diagonal pin jointed struts. Is here shown how multilinear plastic link elements governed by a hysteretic Pivot model, available in different FEM codes, can be appropriately used to model the equivalent struts to perform linear or nonlinear analyses. In order to enlarge experimental knowledge on cyclic behavior of infilled frames structures and as reference for developing the above mentioned modeling strategy, an experimental campaign on single-storey, single-bay, fully infilled frames with different kinds of masonry and subjected to lateral cyclical loads, was carried out, and some others available in the literature are referred to. Validation of Pivot modeling approach was carried out comparing experimental results and computer simulations of the experimental tests. In the paper hysteresis parameters values calibrating Pivot law are also given for involved masonry infills typologies and some proposals for correlation between strength and stiffness of infilled frames and of masonry infills are provided as a tool for the quick calibration of the Pivot model in practical applications.  相似文献   

15.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

16.
Recent earthquakes, that stroked Italian regions in past decades (Umbria— Marche 1997; Molise 2002; L’Aquila 2009), pointed out the high vulnerability of reinforced concrete existing buildings causing severe damages in the structures and consequently life losses. This is mainly due to the fact that such structures were often built without reference to seismic actions or on the basis of old standard provisions. Nowadays in Italy, Public Authorities are requested to evaluate the seismic vulnerability of their building stock assessing the actual capacity of such structures, as a consequence of new hazard levels and seismic microzonation introduced by new standards. According to Eurocode 8 or Italian standard NTC 2008, the seismic analysis of existing reinforced concrete buildings can be performed by one of the established procedure (i.e. Linear Static Analysis LSA, Linear Dynamic Analysis LDA, Nonlinear Static Analysis NSA, Nonlinear Dynamic Analysis NDA), depending on the achieved knowledge level about the structural system and materials. In order to compare efficiency and differences of previously described approaches, a deep investigation was executed on a reinforced concrete existing building whose dynamic behaviour was evaluated by an experimental dynamic analysis. In such a way, updated models were obtained and adopted for seismic analysis performed by using linear and nonlinear approaches, taking into account the stiffness and strength contribution of masonry infill walls. It was so possible to get useful indications on the reliability and discrepancies of different modelling approaches as well as on the influence of masonry infills on the seismic response of existing r.c. buildings.  相似文献   

17.
This study focuses on the evaluation of seismic safety of unreinforced masonry buildings in Turkey by using fragility curves generated for two behavior modes of load bearing walls: in-plane and out-of-plane. During generation of fragility curves, a force-based approach has been used. There exist two limit states in terms of base shear strength for in-plane behavior mode and flexural strength for out-of-plane behavior mode. To assess the seismic vulnerability of unreinforced masonry buildings in Turkey, fragility curves generated for in-plane behavior were verified by the observed damage during the 1995 Dinar (Turkey) earthquake and fragility curves generated for out-of-plane behavior were verified by the observed damage during the 2010 Elaz?? (Turkey) earthquake. The verification results reveal that the proposed fragility-based procedure can provide an alternative for the seismic safety evaluation of unreinforced masonry buildings in Turkey. Using this procedure, it becomes possible to investigate a large population of masonry buildings located in regions of high seismic risk in a short period of time. The obtained results are valuable in the sense that they can be used as a database during the development of strategies for pre-earthquake planning and risk mitigation for earthquake prone regions of Turkey.  相似文献   

18.
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads.Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers.This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada.The old historic center of Quebec City has been selected as a typical study area.The standard fragility analysis combines the inelastic spectral displacement,a structure-dependent earthquake intensity measure,and the building damage state correlated to the induced building displacement.The proposed procedure consists of a three-step development process:(1) mechanics-based capacity model,(2) displacement-based damage model and(3) seismic demand model.The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings.Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER.Hazus shows the highest probability of the occurrence of no to slight damage,whereas the highest probability of extensive and complete damage is predicted with ELER.This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.  相似文献   

19.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
基于BP神经网络模型的多层砖房震害预测方法   总被引:10,自引:2,他引:8  
针对传统的基于地震烈度的建筑物震害预测方法的不足,本文以地震动峰值加速度作为建筑物震害预测的地震动指标,结合几次大地震中多层砖房的震害实例,提出了一种基于BP神经网络模型的建筑物震害预测方法,模型的输入为反映结构抗震性能的各类物理参数,输出为给定地震动峰值加速度下建筑物破坏状态的概率。研究表明:基于BP网络模型的多层砖房的震害预测结果与震害实例的实际情况比较吻合,本文的思路和方法可推广于其他不同类型的建筑结构的震害预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号