首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
近岸水深较浅,波浪具有较强的非线性,海床破坏与波浪作用下孔隙水压力的分布有着密切的关系。波浪场控制方程采用雷诺时均方程和k-ε紊流模型,入射波采用椭圆余弦波,采用PLIC-VOF法追踪自由表面;海床域以Biot动力固结理论为基础,建立了非线性波浪与海床相互作用的弱耦合数学模型,获得椭圆余弦波作用下沙质海床中孔隙水压力响应规律。计算结果表明,与线性波浪相比,浅水非线性波作用下沙质海床中孔隙水压力幅值增大非常显著。  相似文献   

2.
海底孔压对波浪响应试验研究及数值模拟   总被引:7,自引:1,他引:6  
刘涛  冯秀丽  林霖 《海洋学报》2006,28(3):173-176
孔隙水压力在海底土尤其在砂性海床中扮演着一个非常重要的角色.波浪的周期性加载作用,在砂土及粉土中产生超静孔隙水压力,其幅值大小是海床发生液化破坏的控制因素.在海上工程的历次调查中发现孔压引起许多液化破坏现象,如粉土海床的塌陷、凹坑、坡度较大处的粉砂流及构筑物基础周围的过量冲刷造成石油管架下沉等等,因此研究海床中孔压对波浪的响应具有重要的理论意义和实践意义.  相似文献   

3.
波浪作用下孔隙海床-管线动力相互作用分析   总被引:1,自引:0,他引:1  
波浪作用下海床中的孔隙水压力与有效应力是影响海底管线稳定性的主要因素。然而,在目前的海床响应分析中一般将管线假定为刚性,并不能合理地考虑海床与管线之间的相互作用效应,同时也没有考虑土体和管线加速度对海床动力响应的惯性影响,从而无法确定由此所引起的管线内应力。为此考虑管线的柔性,分别采用饱和孔隙介质的Biot动力固结理论和弹性动力学理论列出了海床与管线的控制方程,进而采用摩擦接触理论考虑海床与管线之间的相互作用效应,基于有限元方法建立了海床-管线相互作用的计算模型及其数值算法。通过变动参数对比计算讨论了管线几何尺寸、海床土性参数对波浪所引起的管线周围海床孔隙水压力和管线内应力的影响。  相似文献   

4.
单桩基础周围斜坡海床中的波致孔隙水压力响应与纯斜坡海床存在较大差异。为了解不同波高、波周期条件下,单桩基础周围波浪传播变形及其对斜坡海床孔压振荡响应的影响,在波浪水槽末端铺设了长6 m、坡度1∶16的斜坡砂床进行试验。通过改变桩身位置和波浪参数,测量斜坡段各处波面形态,采集单桩周围孔隙水压力,分析了桩身位置及波浪参数对斜坡海床孔压响应的影响。结果表明:相同入射波条件下,随距坡脚水平距离增加,波高、近底流速和桩周孔隙水压力幅值都随之增大;桩周孔隙水压力幅值分布规律为:桩前孔压幅值明显大于桩侧与桩后孔压幅值。当Keulegan-Carpenter数大于6时,随着波高和波周期增大,马蹄涡产生的负压区使得桩侧海床孔隙水压力与纯斜坡海床孔隙水压力差值迅速增加。  相似文献   

5.
由于浅水区波浪的非线性影响显著,浅埋管道受非线性波浪荷载的影响大,为了保证管道长期运行的稳定性,在管道设计过程中需要充分考虑由非线性波浪引起的波浪力。考虑孔隙水和海床土的压缩性,基于Biot固结理论和一阶近似椭圆余弦波理论,利用分离变量法推导了非线性波浪作用下浅水区埋置管道周围海床的渗流压力,进而给出了埋置管道上的波浪力压力解析解,并与已有的文献结果进行比较。计算结果表明,在椭圆余弦波的作用下,海底管道周围海床内的渗流压力呈正弦分布,且管道所受的波浪力随着管径的增大而增大。  相似文献   

6.
在海洋环境中,海床土体由于地质成因通常是非均质的。由于非均质海床在波浪荷载下的海床响应与均质海床相比存在较大差异因此大批学者通过数值法和解析法对波浪荷载下非均质海床响应问题做了全面研究,但相关室内试验尚处于起步阶段。通过一维圆筒实验对不同类型非均质海床在波浪荷载下的响应情况做了详细的实验研究,不仅探明了非均质海床在波浪荷载下的响应及液化规律,也为相关理论及数值研究提供了实验依据。对实验结果的参数分析和液化分析可知,非均质海床的渗透系数对实验结果影响明显,渗透系数较大的非均质海床将产生更大的孔隙水压力响应及更小的海床液化。  相似文献   

7.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

8.
海底管道-土体-水体相互作用对土体和管道的稳定性具有重要影响,但波浪作用下海底管道对其周围土体性质的影响仍有待深入研究。通过一系列室内波浪水槽试验,研究了波浪荷载和管道振动作用下海床土体内部的超孔隙水压力响应。实验结果表明,管道的铺设会增大海底土体超孔隙水压力累积程度,当管道发生振动时,海床土体超孔隙水压力累积程度进一步增大,从而增加了土体液化势。此外,波高增加也会导致海床土体的超孔隙水压力累积程度增大。本文研究成果对管道-土体相互作用研究和海底管道维护具有指导意义。  相似文献   

9.
波浪作用下海底斜坡滑动稳定性分析中,一般未考虑海底坡度引起的波浪浅水效应,即不考虑波浪在斜坡面上的变形导致的波压力变化,降低了其计算结果的可靠性。本文基于沿斜坡面传播的线性波浪理论,考虑波浪的浅水效应,利用波浪与重力作用下海底斜坡的有效应力场,计算海底斜坡滑动稳定性安全系数。在验证海底斜坡滑动稳定性计算结果可靠性的基础上,分析了坡度对海底斜坡瞬态波浪响应及其滑动失稳特征的影响。结果表明,由于波浪沿斜坡面传播的浅水效应,相对于水平海床,波浪作用下斜坡最大瞬态应力和孔隙水压力随着坡度的增加基本呈线性增加趋势,最大水平位移呈非线性增加趋势;相比于坡底水平段海床的滑动区,斜坡面上滑动区的深度和水平方向滑动范围均有所增加,且坡度越大,这种效应越显著;相比于饱和海床,非饱和条件下,坡度对斜坡体滑动特征的影响程度有所降低。  相似文献   

10.
海床在波浪作用下是否稳定对海底工程的安全至关重要,海床的稳定性与土体中的孔压响应密切相关。水槽模拟试验表明:在波浪的作用下,黄河三角洲粉土海床中将产生振荡孔隙水压力和累积孔隙水压力。振荡孔隙水压力大小与土层深度、波高和粘粒含量有关,其振幅(能量)在土层中随深度的增加呈指数衰减,且粘粒含量越高衰减越快;加载波高越大,能量衰减越快。而累积孔压响应模式表现为在波浪作用最初的一段时间内,孔隙水压力快速上升,然后逐渐减小而趋于稳定,其大小和速率也与波高、粘粒含量、土层埋深有关,粘粒含量越高,孔压累积速度越低。  相似文献   

11.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   

12.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

13.
Wave-induced instability of seabed may cause damage to coastal and offshore structures. This issue has been investigated mostly for mildly sloping (<5°) seabed considering uncoupled or one-way coupled response of wave and seabed interaction. However, some of the marine structures are founded on seabed with steeper slopes. In this study, the wave-induced response and instability of sloping seabed are evaluated using a coupled finite element model. The interaction between fluid and porous seabed accounting for the effect of fluid motion on the seabed response, and conversely the effect of seabed response on the fluid motion (but not on the surface wave profile) is considered. The results indicate that the system response (fluid pressure, stresses, etc.) and the extent of instantaneously liquefied zone within the sloping seabed with significant steepness are lesser than those for horizontal seabed. Moreover, for typical sediment and wave characteristics, for the flat seabed, the response obtained from fully coupled analysis is not significantly different from those obtained by uncoupled analysis. For the sloping bed, such difference is slightly greater as compared to that for the flat bed.  相似文献   

14.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   

15.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

16.
Abstract

The instability of the seabed constitutes an important consideration in the planning and design of various offshore facilities. The stresses and the pore water pressure in the sediments, induced by the action of waves during a storm, may cause them to fail, leading to seabed instability. In this article the possible mechanism of such failures are discussed and the conditions necessary for them are formulated through simplified analyses. These provide the combinations of wave, site, and sediment parameters likely to cause instability, which may be used to identify potentially unstable sediments in a given offshore region during a storm. The numerical results are presented in convenient graphical form. Some illustrative field studies are also presented.  相似文献   

17.
Models based on the theoretical framework of soil mechanics are presented to evaluate storm wave-induced silty seabed instability and geo-hazards through a case study in the Yellow River delta. First, the transient and residual mechanisms of wave-induced pore pressure are analyzed. Three typical models (i.e., elastic model, pore pressure development mode and elasto-plastic model) are proposed to calculate wave-induced stresses in the seabed. Next, mechanisms and calculation methods of wave-induced seabed instability modes such as scour, liquefaction, seepage instability and shear slide are proposed. Typical results of storm wave-induced excess pore pressure and seabed instability are given and relevant discussions are made. At last, the formation mechanism of geo-hazards in the Yellow River delta is analyzed based on the proposed mechanism and calculated results. Results and analysis indicate that both transient and residual mechanisms are important to storm wave-induced response of silty seabed and hence the elasto-plastic model is more appropriate. Complete liquefaction does not happen, while other types of instability occur mostly within 2–6 m under the seabed surface. Wave-induced scour, seepage instability and shear slide are all possible instability modes under the 1-year storm waves, and scour is predominant for the 50-year storm waves. The formation mechanism of geo-hazards such as shallow slide and storm wave reactivation, pockmarks, silt flow and gully, disturbed stratum and hard crust in the Yellow River are well explained based on the proposed mechanisms and calculated results of storm wave-induced silty seabed instability.  相似文献   

18.
The wave dispersion equation has played a very important role in the development of ocean surface wave theories. The evaluation of the length of a water wave is an essential example of solving the dispersion relation. Conventional ocean wave theories have been based on an assumption of a rigid impermeable seabed. Thus, the conventional wave dispersion equation can only be used in the case of a wave propagating over a rigid impermeable seabed. For waves propagating over a porous seabed (such as a sandy bed), the conventional dispersion relation is no longer valid because of the absence of the characteristics of the porous seabed. The objective of this study is to establish a new wave dispersion equation for waves propagating over a porous seabed. Based on the new relation, the effects of a porous seabed on wave characteristics (such as the wavelength and wave profile) are discussed in detail.  相似文献   

19.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

20.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号