首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper, remote sensing, geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Vaigai basin, Tamilnadu. Several digital image processing techniques, including standard color composites, intensity–hue–saturation transformation and decorrelation stretch were applied to map rock types. Remote sensing data were interpreted to produce lithological and lineament maps such as geology, geomorphology, soil hydrological group, land use/land cover and drainage map were prepared and analyzed using GIS Arc Map GIS Raster Calculator module as geomorphology?×?12?+?drainage?×?9?+?lineament?×?5?+?geology?×?8?+?land use?×?2?+?relief?×?4. The final cumulative map generated by applying the above equation had weight values ranging from 0.315 to 4.515. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan, the thematic maps for the study area.  相似文献   

2.
Groundwater recharge is an important process for the management of both surface and subsurface water resources. The present study utilizes the application of analytical hierarchical process (AHP) on geospatial analysis for the exploration of potential zones for artificial groundwater recharge along Vaigai upper basin in the Theni district, Tamil Nadu, India. The morphology of earth surface features such as geology, geomorphology, soil types, land use and land cover, drainage, lineament, and aquifers influence the groundwater recharge in either direct or indirect way. These thematic layers are extracted from Landsat ETM+ image, topographical map, and other collateral data sources. In this study, the multilayers were weighed accordingly to the magnitude of groundwater recharge potential. The AHP technique is a pair-wise matrix analytical method was used to calculate the geometric mean and normalized weight of individual parameters. Further, the normalized weighted layers are mathematically overlaid for preparation of groundwater recharge potential zone map. The results revealed that 21.8 km2 of the total area are identified as high potential for groundwater recharge. The gentle slope areas in middle-east and central part have been moderately potential for groundwater recharge. Hilly terrains in south are considered as unsuitable zone for groundwater recharge processes.  相似文献   

3.
The importance of groundwater is growing based on an increasing need and decreasing spring discharges in the Burdur area. Remote Sensing and the Geographic Information System (GIS) have been used for investigation of springs, which are an important groundwater source. The chemical composition of groundwater is not of drinking water quality in Burdur city and water in the Burdur residential area is being obtained from the Cine plain.The purpose of this study was to investigate new water sources by using remote sensing and GIS methods. Geology, lineament and land use maps of the research area were prepared using the Landsat TM satellite image composed of different analyses on the TM 7–4-1 band. In addition, contours, creeks, roads and springs were digitized using a topographic map of 1/100,000 scale to produce a drainage density map. A groundwater potential map was produced which integrated thematic maps, such as annual rainfall, geology, lineament density, land use, topography, slope and drainage density. According to this investigation, the surrounding villages of Askeriye, Bugduz, Gelincik, Taskap and Kayaalt were determined to be important from the point of view of groundwater potential in the research area.  相似文献   

4.
Life and the sustainable growth of socioeconomic sectors such as agriculture and industry depend on groundwater, particularly in arid and semi-arid regions where surface water resources are limited. The objectives of the current study are to characterize groundwater chemistry and assess its suitability for industrial usage in the Guanzhong Basin located in the semi-arid region of northwest China. To better understand the hydrogeochemistry in the study area, statistical analysis, ionic plots and Pearson's correlation analysis were conjunctively used. Finally, a novel industrial water quality index (IndWQI) model was developed in this paper to determine the overall industrial water quality based on scaling, corrosion, and foaming coefficients as well as some physicochemical parameters. The contribution of each parameter to the overall industrial water quality was determined using multivariate statistical analysis approaches. The findings reveal that dissolution of minerals such as calcite, dolomite, anhydrite and gypsum regulate the groundwater geochemistry in the study area. In addition, human activities influence the groundwater quality in the study area. According to the novel IndWQI approach, 78.95 % of the confined water samples and 74.51 % of the phreatic water samples have excellent or good quality, and can be safely used for industrial boilers. The geospatial analysis shows that the most contaminated groundwater samples are mainly located in northeast Xi'an and the northeast region of the Guanzhong Basin. The IndWQI model is trustworthy, as it can combine several water quality indices and give an instantaneous impression of the whole groundwater quality for industrial uses. It can serve as a benchmark for other areas across the world with a comparable climate.  相似文献   

5.
This paper aims at mapping the potential groundwater recharge zones in the southern part of Jordan Valley (JV). This area is considered as the most important part for agricultural production in Jordan. The methodology adopted in this study is based on utilizing the open ended SLUGGER-DQL score model, which was developed by Raymond et al (2009). Geographic information systems were used in this study to build up the different layers of this model and to create the potential groundwater recharge zones. Based on the generated SLUGGER-DQL potential map, it was found that about 70.8 % of the investigated area was categorized as high potential for groundwater recharge, 18.7 % as moderate, and 10.5 % as low potential for groundwater recharge. To validate the model results, sensitivity analysis was carried out to assess the influence of each model parameter on the obtained results. Based on this analysis, it was found that the slope parameter (S) is the most sensitive parameter among SLUGGER-DQL model parameters, followed by water level in summer (L), well density (D), water quality (Q), runoff availability (R), land use/land cover, geology (GE), whereas the lowest sensitive parameter is the geology parameter (GE). Moreover, the parameters R, D, and Q show the lowest effective weights. The effective weight for each parameter was found to differ from the assigned theoretical weight by SLUGGER-DQL index model.  相似文献   

6.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

7.
Water quality data are required in order to compare chemical water analyses and identify water masses. R-mode factor analysis, a popular multivariate statistical tool, has been effectively used for groundwater quality studies. In this paper, the R-mode factor analysis was applied to 50 groundwater samples collected from pumping wells in the Sangan-Khaf basin which is located in the southeast of Mashhad, northeast Iran. The groundwater samples were analysed for chemical parameters. The factor analysis was then performed on the chemical data set. It can be suggested that four factors in R-mode analysis explain more than 94.31% of the total variance. The contribution of each factor at sample points, factor score, was calculated. The spatial distribution of the factor scores for each factor was mapped separately. Since the Sangan iron mine south of the study area probably affects groundwater aquifer, therefore, such studies can be used to manage the groundwater quality in the study area.  相似文献   

8.
Panvel Basin of Raigarh district, Maharashtra, India is the study area for groundwater quality mapping using the Geographic Information System (GIS). The study area is typically covered by Deccan basaltic rock types of Cretaceous to Eocene age. Though the basin receives heavy rainfall, it frequently faces water scarcity problems as well as water quality problems in some specific areas. Hence, a GIS based groundwater quality mapping has been carried out in the region with the help of data generated from chemical analysis of water samples collected from the basin. Groundwater samples show quality exceedence in terms of chloride, hardness, TDS and salinity. These parameters indicate the level of quality of groundwater for drinking and irrigation purposes. Idrisi 32 GIS software was used for generation of various thematic maps and for spatial analysis and integration to produce the final groundwater quality map. The groundwater quality map shows fragments pictorially representing groundwater zones that are desirable and undesirable for drinking and irrigation purposes.  相似文献   

9.
The sustainable development and management of groundwater resource needs quantitative assessment, based on scientific principle and recent techniques. In the present study, groundwater potential zone is being determined using remote sensing, Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques using various thematic layers viz. geomorphology, geology, drainage density, slope, rainfall, soil texture, groundwater depth, soil depth, lineament and land use/ land cover. The Analytic Hierarchy Approach (AHP) is used to determine the weights of various themes for identifying the groundwater potential zone based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence. Finally, obtained groundwater potential zones were classified into five categories, viz. low, medium, medium-high, high and very high potential zone. The result depicts the groundwater potential zone in the study area and found to be helpful in better development and management planning of groundwater resource.  相似文献   

10.
The study region comprises the Sidi Bouzid shallow aquifer, which is located in the western part of Central Tunisia. It is mainly occupied by agricultural land with intensive use of chemical fertilizers especially nitrates. For this reason, nitrate measurement was performed in 38 water samples to evaluate and calibrate the obtained models. Several environmental parameters were analyzed using groundwater nitrate concentrations, and different statistical approaches were applied to assess and validate the groundwater vulnerability to nitrate pollution in the Sidi Bouzid shallow aquifer. Multiple linear regression (MLR), analyses of covariance (ANCOVA), and logistic regression (LR) were carried out for studying the nitrate effects on groundwater pollution. Statistical analyses were used to identify major environmental factors that control the groundwater nitrate concentration in this region. Correlation and statistical analyses were conducted to examine the relationship between the nitrate (dependent variable) and various environmental variables (independent variables). All methods show that “groundwater depth” and “land use” parameters are statistically significant at 95% level of confidence. Groundwater vulnerability map was obtained by overlaying these two thematic layers which were obtained in the GIS environment. It shows that the high vulnerability area coincides with the likelihood that nitrate concentration exceeds 24.5 mg/l in groundwater. The relationship between the groundwater vulnerability classes and the nitrate concentrations provides satisfactory results; it showed an Eta-squared correlation coefficient of 64%. So, the groundwater vulnerability map can be used as a synthetic document for realistic management of groundwater quality.  相似文献   

11.
In this study, hydrochemical analysis, statistical analysis and GIS database have been successfully used to explain the main factors and mechanisms controlling the distribution of major and trace elements in groundwater. The groundwater of Megara basin is subject to intense exploitation to accommodate all the water demands of this agricultural area. Water quality data obtained from 58 sampling sites of the Megara basin, aims to describe groundwater quality in relation to geology and anthropogenic activities. Factor analysis revealed that four factors accounted for 79.96% of the total data variability. The contribution of each factor at sampling sites was calculated. Evaluation of water samples by comparing quality standards and levels recorded in the literature for both drinking and irrigation uses is discussed.  相似文献   

12.
A case study was conducted to find the groundwater potential zones in an area between the Serang and Bogowonto rivers, Kulon Progo Regency, Java, Indonesia. The objectives of this study were to delineate the groundwater potential zone based on a number of groundwater parameters that can be surveyed in the field and to incorporate the geomorphological conditions into these data. The geomorphology interpretation was conducted using the landform approach. This approach begins by preparing supporting data such as an Indonesian Topographic Map containing contour and land use data; a regional geology map containing lithology type and geology structures; and soil, climate, and hydrological data. The determination of the geomorphology unit was conducted manually by the visual interpretation of Digital Landsat ETM+ with some image interpretation keys. Four groundwater parameters were surveyed in the field: (a) depth to the water table, (b) water table fluctuation, (c) fluid electrical conductivity to represent groundwater quality, and (d) aquifer thickness. The groundwater potential zones were obtained by overlaying all the groundwater field parameters in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During the weighted overlay analysis, rankings were produced for each individual parameter of each groundwater field parameter, and weights were assigned based on the amount of influence they had (i.e., depth to the water table—30 %, water table fluctuation—20 %, aquifer thickness—30 %, and fluid conductivity—20 %). We then found the good, moderate, and poor zones in terms of groundwater potential, which had areas of 5.83, 4.53, and 2.36 km2, respectively. Areas with good groundwater potential are located largely within sand dunes, beach ridges, beaches, and fluviomarine plain landforms, which are characterized by a shallow water table, low fluctuation, thick aquifer, and low EC value. Moderate groundwater zones are generally characterized by poor water quality (high EC value), which is found to some degree in the alluvial plain. The regions with poor groundwater potential are spread mainly across the landforms composed of igneous rock (thin aquifers), such as denudational hills, which act as run-off zones due to their steep slope.  相似文献   

13.
In order to assess the impact of coal mining on groundwater quality in Talcher Coalfield area, seventeen groundwater samples for pre and post monsoon seasons were collected from borewells/dugwells and analysed for major ions and trace elements. Water quality analysis of major ions and trace elements shows elevated concentration in few groundwater samples. The water quality data was analysed using multivariate statistical techniques viz., factor analysis and cluster analysis. The result clearly shows that the variation in the season is due to recharge of rain water during monsoon. The factor and cluster analysis brought out impact of intensity by mining activity on groundwater regime. Discharge of mining seepage effluents and its interaction with the groundwater contaminate the surrounding groundwater regime. Multivariate statistical techniques are potential tools and provide greater precision for identifying contaminant parameters linkages with mining environment.  相似文献   

14.
The valley of Kashmir is blessed with abundant water resources. However, high population growth and concentration of population at favorable locations have resulted in increased demand for water. The problem is further aggravated in Lidder catchment where unplanned tourism development has resulted in deterioration of water quality. Multi-Criteria Evaluation (MCE) approach is adopted using IRS P6 LISS III satellite data 2010, geological map published by Geological Survey of India, toposheets prepared by Survey of India, 1961 and field observation. Seven thematic layers (slope, lineament density, drainage density, soil, geology, geomorphology and land use land cover) are generated in GIS environment and weighted according to their relative relevance to groundwater occurrence. Knowledge-based weights and ranks are normalized, and a weighted linear combination technique is adopted to determine the groundwater potential (GWP). The catchment is divided into five zones of very high, high, medium, low and very low GWP. The results show that 50.22% of the total catchment area, which is uninhabited, has very low GWP. However, the densely populated southern part of the catchment has moderate to very high GWP. The study demonstrates that MCE using remote sensing and GIS technology could be efficiently employed as a very useful tool for the assessment and management of groundwater resources especially in regions where data is poor.  相似文献   

15.
This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria, and to understand the major factors governing groundwater quality. The study area is suffering from recurring droughts, groundwater resource over-exploitation and groundwater quality degradation. The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques, principal component analysis (PCA), and ratios of major ions, based on the data derived from 33 groundwater samples collected in February 2014. Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride (as Cl?). The dominant water types are Na-Cl (27%), Mg-HCO3 (24%) and Mg-Cl (24%). According to the (PCA) approach, salinization is the main process that controls the hydrochemical variability. The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality. The PCA highlighted two types of recharge: Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO3?. Additionally, three categories of samples were identified: (1) samples characterized by good water quality and receiving notable recharge from carbonate formations; (2) samples impacted by the natural salinization process; and (3) samples contaminated by anthropogenic activities. The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks, dissolution of evaporite as halite, evaporation and cation exchange. The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water.  相似文献   

16.
During the last three decades, remotely sensed data (both satellite images and aerial photographs) have been increasingly used in groundwater exploration and management exercises. An integrated approach has been adopted in the present study to delineate groundwater recharge potential zones using RS and GIS techniques. IRS-1C satellite imageries and Survey of India toposheets are used to prepare various thematic layers viz. geology, soil, land-use, slope, lineament and drainage. These layers were then transformed in to raster data using feature to raster converter tool in ArcGIS 9.3 software. The raster maps of these factors are allocated a fixed score and weight computed from Influencing Factor (IF) technique. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. Subjective weights are assigned to the respective thematic layers and overlaid in GIS platform for the identification of potential groundwater recharge zones within the study area. Then these potential zones were categories as ‘high’, ‘moderate’, ‘low’, ‘poor’. The resulted map shows that 19 % of the area has highest recharge potential, mainly confined to buried pediplain, agriculture land-use and river terraces (considerable amount of precipitated water percolates into subsurface), 28 % of the area has moderate groundwater recharge potentiality and rest of the area has low to poor recharge potentiality. The residual hills and linear ridges with steep slopes are not suitable for artificial recharge sites. Finally, 13 % of total average annual precipitated water (840 mm) percolates downward and ultimately contributes to recharge the aquifers in the Kovilpatti Municipality area. The paper is an attempt to suggest for maintaining the proper balance between the groundwater quantity and its exploitation.  相似文献   

17.
Groundwater management is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in semi-arid areas. To assess the current rate of groundwater withdrawal and possibility of recharge of potential aquifer in the semi-arid regions is essential for water management. The present study aimed to identify potential area for groundwater recharge structure in the Gwalior area based on land use, rainfall variation, hydrological component and statistical analysis. In this work, a stream survival approach was used for the assessment of water channel by using triangulated network and regression analysis to find out the correlation of individual component with reference to water management. Land use/land cover (LULC) map prepared from multispectral satellite images of the study area and used to validate the hydrological component and the results observed through the regression model shows good correlation. Therefore, immediate and effective water management schemes are required for sustainable water resource development and management in the area.  相似文献   

18.
Groundwater quality assessment in urban environment   总被引:1,自引:1,他引:0  
The assessment of environmental effects generated by urban areas (with various activities as agriculture, industry, human activities) on groundwater quality became essential for the use and conservation of the water resources. The main objective was to apply a water quality index to the groundwater sources using the specific methodology, establishing the suitability for drinking for groundwater. Water resources were monitored in October 2011, the samples were collected from 22 points for groundwater, and more parameters were analyzed: pH, electrical conductivity, turbidity, oxygen regime, hardness, alkalinity, nutrients regime (nitrates, ammonium, phosphates) which were considered important and utilized for water quality index computation that reveal poor quality for groundwater. The oxidability should be included in computation formula and the final results used for water management, taking into consideration the limits of the current model. Multivariate statistical analysis was used to indicate the influence of urban area on the quality of groundwater resources. Results of the analysis highlight an influence of geology and a contamination of agricultural origin.  相似文献   

19.
The present study was carried out in Singrauli area of the north India to know the water quality at selected sites. Physico-chemical parameters like pH, total dissolved solids (TDS), bicarbonate, hardness, calcium, magnesium, sodium, potassium, chloride, sulfate, copper, iron, cobalt, manganese, zinc, and chromium were analyzed in 27 water samples. Locations selected for sampling were based on the preliminary field survey carried out to understand the overall impact of mining and industrialization on the surface and groundwater resources of Singrauli. Base map, drainage map, and land use/land cover of the study area were prepared from Survey of India topographic map 63 L/12 on 1:50000 scale and satellite data of IRS P6 LISS III 4th May 2010. Land use were categorized into 15 categories out of which major area occupied by open forest covers 20.33 %, uncultivated land 20.25 %, cultivated land 12.60 %, dense forest 11.00 %, and other categories cover 35.82 %. The results obtained are compared with World Health Organisation standards for drinking water quality. The physico chemical analysis shows alkaline nature of water, soft to moderately soft, TDS and total alkalinity exceeds the desirable limit. The major ions in water like calcium, and magnesium are within desirable limits, and sulfate and potassium exceed in limit at some locations, whereas sodium and chloride show higher values. The minor ions like copper and zinc show values within desirable limits whereas iron, cobalt, and chromium show higher values than the desirable limits which deteriorate the quality of water.  相似文献   

20.
This paper mainly deals with the integrated approach of remote sensing and Geographical Information System (GIS) to delineate groundwater prospective zones in Narava basin, Visakhapatnam region. The various thematic maps generated for delineating groundwater potential zones are geomorphology, geology, lineament density, drainage density, slope and land use/land cover (LULC). Weighted index overlay (WIO) technique is used to investigate a number of choice possibilities and evaluate suitability according to the associated weight of each unit. The integrated map of the area shows different zones of groundwater prospects, viz. very good (18.9% of the area), good (26.4% of the area), moderate (17.1% of the area) and poor (37.6% of the area). The categorization of groundwater potential was in good agreement with the available water column in the basin area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号