首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
罗伊萍  姜挺  王鑫  陈文锋  张锐 《测绘科学》2011,36(4):173-175
本文提出了一种基于全色波段航空影像和激光雷达数据的建筑物检测方法.如何从激光点云数据中提取出建筑物激光脚点,是建筑物三维重建和轮廓提取的难点问题之一.植被密集区域以及与建筑物紧密相邻的树木的激光点很难与建筑物激光点区分开.本文利用支持向量机对单个激光点的特征进行两分类,特征向量包括激光点的高程、高程变化信息以及与激光点...  相似文献   

2.
This paper introduces PTrees, a multi-scale dynamic point cloud segmentation dedicated to forest tree extraction from lidar point clouds. The method process the point data using the raw elevation values (Z) and compute height (H = Z  ground elevation) during post-processing using an innovative procedure allowing to preserve the geometry of crown points. Multiple segmentations are done at different scales. Segmentation criteria are then applied to dynamically select the best set of apices from the tree segments extracted at the various scales. The selected set of apices is then used to generate a final segmentation. PTrees has been tested in 3 different forest types, allowing to detect 82% of the trees with under 10% of false detection rate. Future development will integrate crown profile estimation during the segmentation process in order to both maximize the detection of suppressed trees and minimize false detections.  相似文献   

3.
点云滤波分类是LiDAR后续应用的基础工作,在点云滤波的基础上,以航空影像为辅助条件,结合点云高程信息,设计一套地物点云的分类方法。该方法首先融合航空影像与LiDAR数据,将对应RGB值赋予每个点,根据植被的光谱特征提取出部分植被点云;然后再根据文中定义的点云高程纹理,在剩余地物点云中提取出建筑物点,最后根据回波次数信息分离出剩余植被点,完成地物点云的分类。采用北京凤凰岭地区一组机载LiDAR数据进行实验。实验结果表明,该方法能够有效地将地物点云进行分类并且满足一定的精度要求,具有一定的实用价值。  相似文献   

4.
This paper highlights a novel segmentation approach for single trees from LIDAR data and compares the results acquired both from first/last pulse and full waveform data. In a first step, a conventional watershed-based segmentation procedure is set up, which robustly interpolates the canopy height model from the LIDAR data and identifies possible stem positions of the tallest trees in the segments calculated from the local maxima of the canopy height model. Secondly, this segmentation approach is combined with a special stem detection method. Stem positions in the segments of the watershed segmentation are detected by hierarchically clustering points below the crown base height and reconstructing the stems with a robust RANSAC-based estimation of the stem points. Finally, a new three-dimensional (3D) segmentation of single trees is implemented using normalized cut segmentation. This tackles the problem of segmenting small trees below the canopy height model. The key idea is to subdivide the tree area in a voxel space and to set up a bipartite graph which is formed by the voxels and similarity measures between the voxels. Normalized cut segmentation divides the graph hierarchically into segments which have a minimum similarity with each other and whose members (= voxels) have a maximum similarity. The solution is found by solving a corresponding generalized eigenvalue problem and an appropriate binarization of the solution vector. Experiments were conducted in the Bavarian Forest National Park with conventional first/last pulse data and full waveform LIDAR data. The first/last pulse data were collected in a flight with the Falcon II system from TopoSys in a leaf-on situation at a point density of 10 points/m2. Full waveform data were captured with the Riegl LMS-Q560 scanner at a point density of 25 points/m2 (leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). The study results prove that the new 3D segmentation approach is capable of detecting small trees in the lower forest layer. So far, this has been practically impossible if tree segmentation techniques based on the canopy height model were applied to LIDAR data. Compared to a standard watershed segmentation procedure, the combination of the stem detection method and normalized cut segmentation leads to the best segmentation results and is superior in the best case by 12%. Moreover, the experiments show clearly that using full waveform data is superior to using first/last pulse data.  相似文献   

5.
以浙江省海宁市4种代表行道树(广玉兰、无患子、悬铃木、香樟树)为研究对象,结合无人机(UAV)影像和三维激光扫描数据,利用ContextCapture、LiDAR360软件完成点云拼接、滤波、降噪和编辑,通过迭代最近点算法实现点云精细匹配,完成多平台点云数据融合,进而得到数字表面模型与数字高程模型,并制作冠层高度模型;采用分水岭分割算法对不同行道树树种的冠层高度模型进行单木分割,并综合局部最大值法实现单木树高、冠幅的参数提取。结果表明,本文方法进行行道树单木分割的精度高,树高、冠幅参数提取值的效果好,满足行道树几何参数调查要求。  相似文献   

6.
The nonlinear dimensionality reduction and its effects on vector classification and segmentation of hyperspectral images are investigated in this letter. In particular, the way dimensionality reduction influences and helps classification and segmentation is studied. The proposed framework takes into account the nonlinear nature of high-dimensional hyperspectral images and projects onto a lower dimensional space via a novel spatially coherent locally linear embedding technique. The spatial coherence is introduced by comparing pixels based on their local surrounding structure in the image domain and not just on their individual values as classically done. This spatial coherence in the image domain across the multiple bands defines the high-dimensional local neighborhoods used for the dimensionality reduction. This spatial coherence concept is also extended to the segmentation and classification stages that follow the dimensionality reduction, introducing a modified vector angle distance. We present the underlying concepts of the proposed framework and experimental results showing the significant classification improvements  相似文献   

7.
Integration of WorldView-2 satellite image with small footprint airborne LiDAR data for estimation of tree carbon at species level has been investigated in tropical forests of Nepal. This research aims to quantify and map carbon stock for dominant tree species in Chitwan district of central Nepal. Object based image analysis and supervised nearest neighbor classification methods were deployed for tree canopy retrieval and species level classification respectively. Initially, six dominant tree species (Shorea robusta, Schima wallichii, Lagerstroemia parviflora, Terminalia tomentosa, Mallotus philippinensis and Semecarpus anacardium) were able to be identified and mapped through image classification. The result showed a 76% accuracy of segmentation and 1970.99 as best average separability. Tree canopy height model (CHM) was extracted based on LiDAR’s first and last return from an entire study area. On average, a significant correlation coefficient (r) between canopy projection area (CPA) and carbon; height and carbon; and CPA and height were obtained as 0.73, 0.76 and 0.63, respectively for correctly detected trees. Carbon stock model validation results showed regression models being able to explain up to 94%, 78%, 76%, 84% and 78% of variations in carbon estimation for the following tree species: S. robusta, L. parviflora, T. tomentosa, S. wallichii and others (combination of rest tree species).  相似文献   

8.
There are now a wide range of techniques that can be combined for image analysis. These include the use of object-based classifications rather than pixel-based classifiers, the use of LiDAR to determine vegetation height and vertical structure, as well terrain variables such as topographic wetness index and slope that can be calculated using GIS. This research investigates the benefits of combining these techniques to identify individual tree species. A QuickBird image and low point density LiDAR data for a coastal region in New Zealand was used to examine the possibility of mapping Pohutukawa trees which are regarded as an iconic tree in New Zealand. The study area included a mix of buildings and vegetation types. After image and LiDAR preparation, single tree objects were identified using a range of techniques including: a threshold of above ground height to eliminate ground based objects; Normalised Difference Vegetation Index and elevation difference between the first and last return of LiDAR data to distinguish vegetation from buildings; geometric information to separate clusters of trees from single trees, and treetop identification and region growing techniques to separate tree clusters into single tree crowns. Important feature variables were identified using Random Forest, and the Support Vector Machine provided the classification. The combined techniques using LiDAR and spectral data produced an overall accuracy of 85.4% (Kappa 80.6%). Classification using just the spectral data produced an overall accuracy of 75.8% (Kappa 67.8%). The research findings demonstrate how the combining of LiDAR and spectral data improves classification for Pohutukawa trees.  相似文献   

9.
One of the challenges of remote sensing and computer vision lies in the three-dimensional (3-D) reconstruction of individual trees by using automated methods through very high-resolution (VHR) data sets. However, a successful and complete 3-D reconstruction relies on precise delineation of the trees in two dimensions. In this paper, we present an original approach to detect and delineate citrus trees using unmanned aerial vehicles based on photogrammetric digital surface models (DSMs). The symmetry of the citrus trees in a DSM is handled by an orientation-based radial symmetry transform which is computed in a unique way. Next, we propose an efficient strategy to accurately build influence regions of each tree, and then we delineate individual citrus trees through active contours by taking into account the influence region of each canopy. We also present two efficient strategies to filter out erroneously detected canopy regions without having any height thresholds. Experiments are carried out on eight test DSMs composed of different types of citrus orchards with varying densities and canopy sizes. Extensive comparisons to the state-of-the-art approaches reveal that our proposed approach provides superior detection and delineation performances through supporting a nice balance between precision and recall measures.  相似文献   

10.
Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a ‘ground mask’. The second group contains the non-ground points which are segmented using an innovative image line guided segmentation technique to extract the roof planes. The image lines are extracted from the grey-scale version of the orthoimage and then classified into several classes such as ‘ground’, ‘tree’, ‘roof edge’ and ‘roof ridge’ using the ground mask and colour and texture information from the orthoimagery. During segmentation of the non-ground LIDAR points, the lines from the latter two classes are used as baselines to locate the nearby LIDAR points of the neighbouring planes. For each plane a robust seed region is thereby defined using the nearby non-ground LIDAR points of a baseline and this region is iteratively grown to extract the complete roof plane. Finally, a newly proposed rule-based procedure is applied to remove planes constructed on trees. Experimental results show that the proposed method can successfully remove vegetation and so offers high extraction rates.  相似文献   

11.
无人机高空间分辨率影像分类研究   总被引:7,自引:0,他引:7  
鲁恒  李永树  林先成 《测绘科学》2011,36(6):106-108
本文利用无人机影像进行土地利用类型研究,面向对象方法对影像分割,获取了最佳分割尺度;根据各土地类别的特征信息建立分类定义,提出了快速、准确获取土地利用类型的方法。研究结果表明,运用面向对象方法能很好地解决无人机高分辨率影像分类问题,其中关键是影像分割尺度的选择和影像对象特征信息的提取。  相似文献   

12.
Airborne lidar systems have become a source for the acquisition of elevation data. They provide georeferenced, irregularly distributed 3D point clouds of high altimetric accuracy. Moreover, these systems can provide for a single laser pulse, multiple returns or echoes, which correspond to different illuminated objects. In addition to multi-echo laser scanners, full-waveform systems are able to record 1D signals representing a train of echoes caused by reflections at different targets. These systems provide more information about the structure and the physical characteristics of the targets. Many approaches have been developed, for urban mapping, based on aerial lidar solely or combined with multispectral image data. However, they have not assessed the importance of input features. In this paper, we focus on a multi-source framework using aerial lidar (multi-echo and full waveform) and aerial multispectral image data. We aim to study the feature relevance for dense urban scenes. The Random Forests algorithm is chosen as a classifier: it runs efficiently on large datasets, and provides measures of feature importance for each class. The margin theory is used as a confidence measure of the classifier, and to confirm the relevance of input features for urban classification. The quantitative results confirm the importance of the joint use of optical multispectral and lidar data. Moreover, the relevance of full-waveform lidar features is demonstrated for building and vegetation area discrimination.  相似文献   

13.
ABSTRACT

The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced classification methods. This study investigated the following topics concerning the classification of 16 tree species in two subtropical forest fragments of Southern Brazil: i) the potential integration of UAV-borne hyperspectral images with 3D information derived from their photogrammetric point cloud (PPC); ii) the performance of two machine learning methods (support vector machine – SVM and random forest – RF) when employing different datasets at a pixel and individual tree crown (ITC) levels; iii) the potential of two methods for dealing with the imbalanced sample set problem: a new weighted SVM (wSVM) approach, which attributes different weights to each sample and class, and a deep learning classifier (convolutional neural network – CNN), associated with a previous step to balance the sample set; and finally, iv) the potential of this last classifier for tree species classification as compared to the above mentioned machine learning methods. Results showed that the inclusion of the PPC features to the hyperspectral data provided a great accuracy increase in tree species classification results when conventional machine learning methods were applied, between 13 and 17% depending on the classifier and the study area characteristics. When using the PPC features and the canopy height model (CHM), associated with the majority vote (MV) rule, the SVM, wSVM and RF classifiers reached accuracies similar to the CNN, which outperformed these classifiers for both areas when considering the pixel-based classifications (overall accuracy of 84.4% in Area 1, and 74.95% in Area 2). The CNN was between 22% and 26% more accurate than the SVM and RF when only the hyperspectral bands were employed. The wSVM provided a slight increase in accuracy not only for some lesser represented classes, but also some major classes in Area 2. While conventional machine learning methods are faster, they demonstrated to be less stable to changes in datasets, depending on prior segmentation and hand-engineered features to reach similar accuracies to those attained by the CNN. To date, CNNs have been barely explored for the classification of tree species, and CNN-based classifications in the literature have not dealt with hyperspectral data specifically focusing on tropical environments. This paper thus presents innovative strategies for classifying tree species in subtropical forest areas at a refined legend level, integrating UAV-borne 2D hyperspectral and 3D photogrammetric data and relying on both deep and conventional machine learning approaches.  相似文献   

14.
Light Detection and Ranging (Lidar) can generate three-dimensional (3D) point cloud which can be used to characterize horizontal and vertical forest structure, so it has become a popular tool for forest research. Recently, various methods based on top-down scheme have been developed to segment individual tree from lidar data. Some of these methods, such as the one developed by Li et al. (2012), can obtain the accuracy up to 90% when applied in coniferous forests. However, the accuracy will decrease when they are applied in deciduous forest because the interlacing tree branches can increase the difficulty to determine the tree top. In order to solve challenges of the tree segmentation in deciduous forests, we develop a new bottom-up method based on the intensity and 3D structure of leaf-off lidar point cloud data in this study. We applied our algorithm to segment trees in a forest at the Shavers Creek Watershed in Pennsylvania. Three indices were used to assess the accuracy of our method: recall, precision and F-score. The results show that the algorithm can detect 84% of the tree (recall), 97% of the segmented trees are correct (precision) and the overall F-score is 90%. The result implies that our method has good potential for segmenting individual trees in deciduous broadleaf forest.  相似文献   

15.
Multiresolution segmentation (MRS) algorithm has been widely used to handle very-high-resolution (VHR) remote sensing images in the past decades. Unfortunately, segmentation quality is limited by the dependency of parameter selection on users’ experience and diverse images. Contrarily, the segmentation by weighted aggregation (SWA) can partly overcome the above limitations and produce an optimal segmentation for maximizing the homogeneity within segments and the heterogeneity across segments. However, SWA is solely tested and justified with digital photos in computer vision field instead of VHR images. This study aims at evaluating SWA performance on VHR imagery. First, multiscale spectral, shape, and texture features are defined to measure homogeneity of image objects for segmentation. Second, SWA is implemented to handle QuickBird, unmanned aerial vehicle (UAV), and GF-1 VHR images and further compared with MRS in eCognition software to demonstrate the applicability of SWA to diverse images in building, vegetation and water, forest stands, farmland, and mountain areas. Third, the results are fully evaluated with quantitative measurements on segmented objects and classification-based accuracy assessment on geographic information system vector data. The results indicate that SWA can produce higher quality segmentations, need fewer parameters and manual interventions, create fewer segmentation levels, incorporate more features, and obtain larger classification accuracy than MRS.  相似文献   

16.
In this paper, a methodology for individual tree-based species classification using high sampling density and small footprint lidar data is clarified, corrected and improved. For this purpose, a well-defined directed graph (digraph) is introduced and it plays a fundamental role in the approach. It is argued that there exists one and only one such unique digraph that describes all four pure events and resulting disjoint sets of laser points associated with a single tree in data from a two-return lidar system. However, the digraph is extendable so that it fits an n-return lidar system (n > 2) with higher logical resolution. Furthermore, a mathematical notation for different types of groupings of the laser points is defined, and a new terminology for various types of individual tree-based concepts defined by the digraph is proposed. A novel calibration technique for estimating individual tree heights is evaluated. The approach replaces the unreliable maximum single laser point height of each tree with a more reliable prediction based on shape characteristics of a marginal height distribution of the whole first-return point cloud of each tree. The result shows a reduction of the RMSE of the tree heights of about 20% (stddev = 1.1 m reduced to stddev = 0.92 m). The method improves the species classification accuracy markedly, but it could also be used for reducing the sampling density at the time of data acquisition. Using the calibrated tree heights, a scale-invariant rescaled space for the universal set of points for each tree is defined, in which all individual tree-based geometric measurements are conducted. With the corrected and improved classification methodology the total accuracy raises from 60% to 64% for classifying three leaf-off individual tree deciduous species (N = 200 each) in West Virginia, USA: oaks (Quercus spp.), red maple (Acer rubrum), and yellow poplar (Liriodendron tuliperifera).  相似文献   

17.
UAVs are fast emerging as a remote sensing platform to complement satellite based remote sensing. Agriculture and ecology is one of the important applications of UAV remote sensing, also known as low altitude remote sensing (LARS). This work demonstrates the use and potential of LARS in agriculture, particularly small holder open field agriculture. Two UAVs are used for remote sensing. The first UAV is a fixed wing aircraft with a high spatial resolution visible spectrum also known as RGB camera as a payload. The second UAV is a quadrotor UAV with an RGB camera interfaced to an on-board single board computer as the payload. LARS was carried out to acquire aerial high spatial resolution RGB images of different farms. Spectral–spatial classification of high spatial resolution RGB images for detection, delineation and counting of tree crowns in the image is presented. Supervised classification is carried out using extreme learning machine (ELM), a single hidden layer feed forward network neural network classifier. ELM was modelled for RGB values as input feature vectors and binary (tree and non-tree pixels) output class. Due to similarities in spectral intensities, some of the non-tree pixels were classified as tree pixels and in order to remove them, spatial classification was performed on the image. Spatial classification was carried out using thresholded geometrical property filtering techniques. Threshold values chosen for carrying out spatial classification were analysed to obtain optimal values. Finally in the delineation and counting, the connected tree crowns were segmented using Watershed algorithm performed on the image after marking individual tree crowns using Distance Transform method. Five representative UAV images captured at different altitudes with different crowns of banana plant, mango trees and coconut trees were used to demonstrate the performance of the proposed method. The performance was compared with the traditional KMeans spectral–spatial method of clustering. Results and comparison of performance parameters of KMeans spectral–spatial and ELM spectral–spatial classification methods are presented. Results indicate that ELM performed better than KMeans.  相似文献   

18.
Many experiments of object-based image analysis have been conducted in remote sensing classification. However, they commonly used high-resolution imagery and rarely focused on suburban area. In this research, with the Landsat-8 imagery, classification of a suburban area via the object-based approach is achieved using four classifiers, including decision tree (DT), support vector machine (SVM), random trees (RT), and naive Bayes (NB). We performed feature selection at different sizes of segmentation scale and evaluated the effects of segmentation and tuning parameters within each classifier on classification accuracy. The results showed that the influence of shape on overall accuracy was greater than that of compactness, and a relatively low value of shape should be set with increasing scale size. For DT, the optimal maximum depth usually varied from 5 to 8. For SVM, the optimal gamma was less than or equal to 10?2, and its optimal C was greater than or equal to 102. For RT, the optimal active variables was less than or equal to 4, and the optimal maximum tree number was greater than or equal to 30. Furthermore, although there was no statistically significant difference between some classification results produced using different classifiers, SVM has a slightly better performance.  相似文献   

19.
单木树冠提取对果树健康状态、营养成分、产量预测具有重要意义。无人机获取的高分辨率遥感影像作为低成本、低风险的数据源,为准确估计棵数、描绘树木冠层轮廓提供了新的技术手段。以往关于单木冠层轮廓提取的研究大多集中在森林或稀疏果园,以局部最大值滤波结果作为基于标记分水岭算法的种子点,该方法在密植型果园的表现并不理想。提出了一种适用于密植型果园、以区域型种子块作为标记的分水岭算法,通过最大似然法提取果树冠层生成冠层数字表面模型,利用高斯滤波结合形态学开运算及自适应阈值分割方法生成区域型种子块,并执行基于种子块标记的分水岭算法,实现密植型果园单木分割。实例研究结果表明,总体棵数查全率为95.22%,查准率为99.09%,得到单木轮廓提取总体准确率为93.45%,总体欠分割误差为5.87%,总体过分割误差为0.90%。与局部最大值种子点提取结果对比,总体准确度提高18.66%,精细树冠轮廓提取精度提高17.75%,可为地形平缓地区密植型果园单棵果树树冠提取提供参考。  相似文献   

20.
利用激光雷达和多角度频谱成像仪数据估测森林垂直参数   总被引:3,自引:0,他引:3  
植被的结构参数如植被高度、生物量、水平和垂直分布等,是影响陆地与大气能量交换乃至生物圈多样性的重要因素。多数遥感系统虽然可以提供植被水平结构的图像,但是不能提供植被成分垂直分布的信息。大尺度激光雷达仪器如LVIS产生的激光雷达信号,已成功地用于估计树高和森林生物量,然而大多数激光雷达仪器不具备图像能力,只能提供一个区域内的采样数据。其他的遥感数据如多角度高光谱、多频率多时相辐射计或雷达数据,可根据GLAS(Geoscience Laser Altimeter System)采样的测量用来推断出连续的森林结构区域覆盖参数。 MISR(Multi-angle Imaging Spectrometer)对陆表多角度的成像能力,可以通过BRDF的各向异性提供植被的结构信息。结合激光雷达的垂直采样和MISR的图像,区域内乃至全球性的森林空间参数的成像是可能的。ICESat卫星上的GLAS数据、Terra卫星上的MISR数据为区域或全球性森林结构参数提供了可能。本文的研究目的是评估GLAS数据,分析类似于MISR的数据对森林结构参数的估计能力。本文中使用了LVIS、AirMISR和GLAS数据。通过对GLAS树高的测量与GLAS像元内来自LVIS的平均树高对比,发现它们是高度相关的。同时还探讨了多角度频谱成像仪数据预测树高信息的能力,这将在今后区域内森林结构参数映射加以研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号