首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Graphitic metapelites from the Howard Ridge area, British Columbia, have been studied to estimate the pressure, temperature and fluid composition attending amphibolite facies metamorphism. Results from thermobarometric calculations indicate that P-T conditions of 610–625°C and 6.7kbar were reached during metamorphism. The equilibrium paragonite-quartz-albite-kyanite-H2O gives significantly different estimates of XH2O in the metamorphic fluid using different paragonite solution models. Estimates of XH2O range from a maximum of 0.93 (Eugster et al., 1972) to a minimum of 0.29 (Chatterjee & Flux, 1986). H2O estimates obtained using the Eugster et al. (1972) and Chatterjee & Froese (1975) solution models give similar results (i.e. 0.8 ± 0.1 versus 0.7 ± 0.1, respectively). Non-ideal mixing in the C-O-H system provides an XH2O estimate of 0.74 at H2O maximum conditions, 0.5 log units below the QFM buffer. The Chatterjee & Flux (1986) paragonite solution model provides unrealistically low estimates of XH2O relative to other paragonite solution models, C-O-H equilibria, and published fluid inclusion and mineral equilibria data. Consistent estimates of fluid composition between C-O-H and mineral equilibria suggest that a H2O-rich fluid attended metamorphism of graphitic metapelites at Howard Ridge.  相似文献   

2.
Sapphirine, coexisting with quartz, is an indicator mineral for ultrahigh‐temperature metamorphism in aluminous rock compositions. Here a new activity‐composition model for sapphirine is combined with the internally consistent thermodynamic dataset used by THERMOCALC, for calculations primarily in K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O (KFMASH). A discrepancy between published experimentally derived FMAS grids and our calculations is understood with reference to H2O. Published FMAS grids effectively represent constant aH2O sections, thereby limiting their detailed use for the interpretation of mineral reaction textures in compositions with differing H2O. For the calculated KFMASH univariant reaction grid, sapphirine + quartz assemblages occur at P–T in excess of 6–7 kbar and 1005 °C. Sapphirine compositions and composition ranges are consistent with natural examples. However, as many univariant equilibria are typically not ‘seen’ by a specific bulk composition, the univariant reaction grid may reveal little about the detailed topology of multi‐variant equilibria, and therefore is of limited use for interpreting the P–T evolution of mineral assemblages and reaction sequences. Calculated pseudosections, which quantify bulk composition and multi‐variant equilibria, predict experimentally determined KFMASH mineral assemblages with consistent topology, and also indicate that sapphirine stabilizes at increasingly higher pressure and temperature as XMg increases. Although coexisting sapphirine and quartz can occur in relatively iron‐rich rocks if the bulk chemistry is sufficiently aluminous, the P–T window of stability shrinks with decreasing XMg. An array of mineral assemblages and mineral reaction sequences from natural sapphirine + quartz and other rocks from Enderby Land, Antarctica, are reproducible with calculated pseudosections. That consistent phase diagram calculations involving sapphirine can be performed allows for a more thorough assessment of the metamorphic evolution of high‐temperature granulite facies terranes than was previously possible. The establishment of a a‐x model for sapphirine provides the basis for expansion to larger, more geologically realistic chemical systems (e.g. involving Fe3+).  相似文献   

3.
ABSTRACT A suite of garnet-wollastonite-scapolite-bearing calcsilicate granulites from the Eastern Ghats has been investigated to document the controls of mineral reactions during the metamorphic evolution of the deep continental crust. The rocks studied show heterogeneity in modal mineralogy and phase compositions in millimetre-sized domains. Textural relations, and the compositional plots of the phases, established that the clinopyroxene exerts a strong influence on the formation and composition of garnet in the complex natural system. P-T estimates using the vapour-independent equilibria involving garnet define a near isobaric cooling path from c. 850C at c. 5.5–5.2 kbar. The deduced trajectory tallies well with the terminal segment of the overall retrograde P-T path construed from the associated rocks using well-calibrated thermobarometers. The ubiquitous occurrence of wollastonite and scapolite in the main calcsilicate body suggests low aCO2 during peak metamorphic condition. Fluid compositions constrained from mineral-fluid equilibria of the garnet-bearing assemblages show domainal variations as a function of the compositions of the solid phases, e.g. garnet and clinopyroxene. A quantitative log/CO2-log/O2 diagram has been constructed to depict the stability of the different calcsilicate assemblages as functions of the compositions and the behaviour of these fugitive species. The results of the mineral-fluid equilibria and the quantitative fluid/rock ratio calculations, in conjunction with the topological constraints, imply vapour-deficient meta-morphism in the rocks studied. It is argued that fO2 during peak metamorphism was monitored by the ambient fO2. Subsequently, during retrogression, different domains evolved independently, whereas the fluid composition was controlled by the mineral-fluid equilibria.  相似文献   

4.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole.  相似文献   

5.
《International Geology Review》2012,54(10):1439-1446
Mineral equilibria in magnesial rocks undergoing metamorphosis in closed systems at different H2O content but at constant pressures and temperatures may be interpreted as follows: a) if H2O is excessive, as in pelitic rocks, the metamorphic zonation (an orderly sequence of dehydrations) correctly represents changes in the temperature during the progressive metamorphism; b) if H2O is deficient, as in the ortho-rocks, the metamorphic zonation may not always be representative of the temperature; however, when H2O itself is zoned in the rock and the metamorphism is isothermal, the metamorphic zonation may become entirely analogous to the zonation in the presence of excessive H2O; c) presence of metastable associations and rapid alternations of mineral parageneses, as in certain magmatic rocks, represent variations in H2O content of the rocks rather than different facies of the metamorphism.  相似文献   

6.
The presence of ternary feldspar in high‐grade meta‐igneous rocks, and the recognition of the thermometric significance of this mineral, has led recent researchers to postulate peak metamorphic temperatures in excess of 1000 °C. However, it needs to be established that such ternary feldspar is not in fact a survivor of the original high‐temperature crystallization of the igneous protolith. After exsolution, the host and lamellae in the ternary feldspar grains may be stable throughout subsequent history as long as recrystallization does not occur. Such a history may involve rehydration and metamorphism, including H2O‐saturated conditions, with the compositions and proportions of the host and lamellae being modified to reflect the PT conditions experienced. In the case of the high‐grade meta‐igneous rocks from the Moldanubian of the Bohemian Massif, some samples that contain ternary feldspar preserve a substantial measure of their igneous heritage. Orthopyroxene‐bearing granulites not only include types that are barely affected by the metamorphism, but also others that have undergone hydration of the igneous protolith prior to the development of a metamorphic overprint. A key to establishing the igneous origin of the ternary feldspar grains is their preservation in garnet that is either itself igneous, or of a relatively low‐temperature metamorphic origin. Applying the logic to the other ternary feldspar‐bearing meta‐igneous rocks deprives the Moldanubian of its ultrahigh temperature (UHT) metamorphic status.  相似文献   

7.
田作林  张泽明  董昕 《岩石学报》2020,36(9):2616-2630
变质相平衡模拟是变质岩领域近几十年最重要的进展之一,它已经成为确定变质作用P-T-t轨迹和探索变质演化过程的有力工具。变质岩的矿物组合不但与其形成的温度(T)和压力(P)条件有关,而且受控于岩石的全岩成分(X)。但是变质岩通常是不均匀的并且往往保留两期以上的矿物组合,因此计算不同成分域或不同变质演化期次的有效全岩成分是模拟P-T视剖面图的核心问题之一。在中-低温变质岩中,石榴石变斑晶的生长会不断地将其核部成分"冻结"而不参与后续变质反应,这导致根据实测全岩成分计算的P-T视剖面图无法有效地模拟石榴石幔部或边部生长阶段的变质演化过程。"瑞利分馏法"和"球体积法"利用电子探针实测的石榴石成分环带可以模拟计算石榴石各个生长阶段所对应的有效全岩成分,本文推荐使用这两个方法来处理石榴石变斑晶的分馏效应问题。相比较而言,石榴石在高温变质岩中通常无法保留生长阶段的成分环带特征,这是因为石榴石成分在高温条件下会发生扩散再平衡,并同时与多数基质矿物达到热力学平衡,这时一般不需要考虑石榴石的分馏效应。但是高温变质岩通常会发生部分熔融并伴随熔体的迁移,进而改变岩石的有效全岩成分。因此,通过P-T视剖面图模拟熔体迁移前后的变质演化过程需要使用"相平衡法"计算迁移的熔体成分以及熔体迁移前后岩石的有效全岩成分。此外,后成合晶与反应边是变质岩中最常见的退变质反应结构,但是后成合晶或反应边中的矿物之间并未达到热力学平衡。这种情况需要结合岩相学观察和矿物成分,利用最小二乘法确定后成合晶或反应边中发生的平衡反应方程式,进而获取变质反应发生时的有效全岩成分并通过计算P-T视剖面图来估算退变质的温压条件。除此之外,岩石体系中三价铁(Fe2O3)和H2O含量的估算一直以来都是相平衡模拟研究中的难点,本文推荐使用P/T-X(Fe3+/FetotMH2O)视剖面图来确定这两个组分的含量,这是因为P/T-X图可以估算各个变质演化阶段或特定矿物组合的Fe2O3或H2O含量。  相似文献   

8.
Abstract The Siluro-Devonian Waits River Formation of north-east Vermont was deformed, intruded by plutons and regionally metamorphosed during the Devonian Acadian Orogeny. Five metamorphic zones were mapped based on the mineralogy of carbonate rocks. From low to high grade, these are: (1) ankerite-albite, (2) ankerite-oligoclase, (3) biotite, (4) amphibole and (5) diopside zones. Pressure was near 4.5kbar and temperature varied from c. 450° C in the ankerite-albite zone to c. 525° C in the diopside zone. Fluid composition for all metamorphic zones was estimated from mineral equilibria. Average calculated χco2[= CO2/(CO2+ H2O)] of fluid in equilibrium with the marls increases with increasing grade from 0.05 in the ankerite-oligoclase zone, to 0.25 in the biotite zone and to 0.44 in the amphibole zone. In the diopside zone, χCO2 decreases to 0.06. Model prograde metamorphic reactions were derived from measured modes, mineral chemistry, and whole-rock chemistry. Prograde reactions involved decarbonation with an evolved volatile mixture of χCO2 > 0.50. The χCO2 of fluid in equilibrium with rocks from all zones, however, was generally <0.40. This difference attests to the infiltration of a reactive H2O-rich fluid during metamorphism. Metamorphosed carbonate rocks from the formation suggests that both heat flow and pervasive infiltration of a reactive H2O-rich fluid drove mineral reactions during metamorphism. Average time-integrated volume fluxes (cm3 fluid/cm2 rock), calculated from the standard equation for coupled fluid flow and reaction in porous media, are (1) ankerite-oligoclase zone: c. 1 × 104; (2) biotite zone: c. 3 × 104; (3) amphibole zone: c. 10 × 104; and diopside zone: c. 60 × 104. The increase in calculated flux with increasing grade is at least in part the result of internal production of volatiles from prograde reactions in pelitic schists and metacarbonate rocks within the Waits River Formation. The mapped pattern of time-integrated fluxes indicates that the Strafford-Willoughby Arch and the numerous igneous intrusions in the field area focused fluid flow during metamorphism. Many rock specimens in the diopside zone experienced extreme alkali depletion and also record low χCO2. Metamorphic fluids in equilibrium with diopside zone rocks may therefore represent a mixture of acid, H2O-rich fluids given off by the crystallizing magmas, and CO2-H2O fluids produced by devolatilization reactions in the host marls. Higher fluxes and different fluid compositions recorded near the plutons suggest that pluton-driven hydrothermal cells were local highs in the larger regional metamorphic hydrothermal system.  相似文献   

9.
Estimation of metamorphic pressures in low temperature eclogite (Type C) is difficult because of the high variance mineral assemblages and problems in geothermometry, solution properties of low-temperature omphacite, and the thermodynamic properties of clinozoisite. We have considered equilibria in the CaO–FeO–MgO–TiO2–Al2O3–SiO2–H2O (CFMTASH) system involving the phase components, quartz, rutile, kyanite, ilmenite, almandine, pyrope, grossular, clinozoisite, sphene, diopside, and H2O-fluid There are four linearly independent equilibria involving the phase components in this system. Because kyanite can crystallize as a nearly pure phase, the lack of kyanite in a rock indicates that a Al2SiO5 is<1.0. If we can estimate temperature independently, we can solve for a Al2SiO5 and pressure by using two of the equilibria in isothermal pressure-activity diagrams. We have applied this approach to eclogites from New Caledonia and from southwestern Oregon. For the New Caledonia eclogites, calculated pressures range from 11.2 to 13.6 kbar at 500°C, and are consistent with the minimum pressures based upon the presence of jadeitic pyroxene+quartz and the lack of stable albite. Oregon eclogites come from different tectonic blocks and calculated minimum pressures of 11–12 kbar are based upon the presence of jadeitic pyroxene+rutile+garnet and lack of stable albite and ilmenite at reduced values of a SiO2 (0.7–0.9).  相似文献   

10.
This Special Issue comprises a selection of the papers given at a two‐day discussion meeting held at the University of Melbourne, Australia in June 2009 to celebrate Roger Powell’s 60th birthday. At this milestone, it is fitting to review Roger’s career to date. He has published ~200 scientific papers on topics that range from low‐ to high‐grade metamorphism, from low‐ to ultrahigh‐pressure (UHP) metamorphism, and from thermodynamics to kinetics. Most of Roger’s papers are multi‐authored and address important questions in the petrogenesis of metamorphic rocks. Roger is widely known for his work with Tim Holland to develop the most complete internally consistent dataset of thermodynamic properties of end members of phases necessary to undertake calculations on the conditions of formation and modification of metamorphic rocks. Additionally, Roger and Tim have developed activity–composition models for many of these phases, building on their important methodological developments in formulating such models. Roger is also responsible for the ongoing development of thermocalc , a thermodynamic calculation software package that may be used to undertake a wide range of phase diagram calculations, including PT projections, PT, PX and TX, compatibility diagrams and μ–μ diagrams. Together, Roger and Tim have changed the way we carry out quantitative phase equilibria studies. However, Roger’s contributions to metamorphic petrology go well beyond the development of phase equilibria methods and mineral thermodynamics. He has contributed significantly to our understanding of a range of metamorphic processes, and with an extensive array of co‐authors has shown how phase equilibria can be used to understand the evolution of metamorphic rocks in general terms as well as in specific terranes. The papers in this Special Issue cover the range from the stabilization of the continents to understanding the formation of orogenic gold deposits, from the stability of sapphirine–quartz‐bearing assemblages to the crystallization of melt in migmatites, from the effects of ferric iron and sulphur on the stability of metamorphic mineral assemblages in general to the effects of ferric iron and H2O on the stability of eclogite in particular, and to the quantification of UHP metamorphism. It is our hope that in reading these contributions, you will be stimulated to seek a better understanding of metamorphic processes and to improve our quantification of the variables in metamorphism.  相似文献   

11.
Twenty-two hornblendes separated from amphibolites and granulites of the Grenville Orogen of Ontario have been quantitatively analyzed for major and minor elements by electron microprobe, for FeO/Fe2O3 by wet chemistry, and for H2O by manometric measurement as H2. Hornblende formulae were calculated on the basis of 24O+OH+Cl+F. Most samples are magnesio-hornblendes, ferroan pargasitic hornblendes and ferroan hastingsitic hornblendes, with weight fractions of Fe3+/(Fe2++Fe3+) ranging from 0.15 to 0.50. An oxy-amphibole component of 0–25 mol%, with an average value of 17 mol%, is obtained for these complete analyses. When compared with structural formulae determined solely from microprobe data, normalization based on 13=Si+Ti+Al+Fe+Mn+Mg cations provides the best approximation to hornblende formulae calculated from the complete analyses. Less satisfactory agreement is obtained from a normalization scheme based on 15=Si+Ti+Al+Fe+Mn+Mg+Ca, while worst agreement is obtained from normalization to 23 oxygens assuming all Fe is Fe2+. No normalization scheme based on microprobe data alone consistently replicates the measured FeO, Fe2O3, and H2O; accurate determination of these values requires complete chemical analysies. Ionic solution models previously have been proposed to evaluate the activity of Ca2Mg5Si8 O22(OH)2(a Trem) in hornblende for use in equilibria that constrain the activity of H2O (a H 2O) in igneous and metamorphic rocks. Application of ionic models to typical hornblendes produces low a Trem (usually<0.01), consequetly yielding extremely low a H 2O. If an oxy-amphibole component is present, the calculated a Trem and H2O is further reduced. An oxy-amphibole component of 25% reduces the calculated H2O activity and that of any hydroxyl-amphibole component by 50% below that calculated with simplified assumptions regarding X OH in the hydroxyl site (i.e., X OH=1, or X OH=1–X ClX f). Thus, methods of amphibole normalizations appear to have a substantial effect on calculated amphibole and H2O activites. Before quantitative hornblende thermobarometry can be calibrated and applied, the amounts of FeO, Fe2O3 and H2O must be measured in order to fully characterize hornblende solid solutions.Contribution No. 478 from the Mineralogical Laboratory, University of Michigan  相似文献   

12.
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐T conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent end‐member data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.  相似文献   

13.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

14.
Progress relating to calculation of partial melting equilibria for metapelites   总被引:36,自引:4,他引:32  
Improved activity–composition relationships for biotite, garnet and silicate liquid are used to construct updated PT grids and pseudosections for high‐grade metapelites. The biotite model involves Ti charge‐balanced by hydrogen deprotonation on the hydroxyl site, following the substitution , where HD represents the hydroxyl site. Relative to equivalent biotite‐breakdown melting reactions in PT grids in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH), those in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (KFMASHTO) occur at temperatures close to 50 °C higher. A further consequence of the updated activity models is that spinel‐bearing equilibria occur to higher temperature and higher pressure. In contrast, the addition of Na2O and CaO to KFMASH to make the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system lowers key biotite‐breakdown melting reactions in PT space relative to KFMASH. Combination of the KFMASHTO and NCKFMASH systems to make Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) results in key biotite‐breakdown melting reactions occurring at temperatures intermediate between those in KFMASHTO and those in NCKFMASH. Given such differences, the choice of model system will be critical to inferred PT conditions in the application of mineral equilibria modelling to rocks. Further, pseudosections constructed in KFMASH, NCKFMASH and NCKFMASHTO for several representative rock compositions show substantial differences not only in the PT conditions of key metamorphic assemblages but also overall topology, with the calculations in NCKFMASHTO more reliably reflecting equilibria in rocks. Application of mineral equilibria modelling to rocks should be undertaken in the most comprehensive system possible, if reliable quantitative PT information is to be derived.  相似文献   

15.
Fe‐rich metapelitic granulites of the Musgrave Block, central Australia, contain several symplectic and coronal reaction textures that post‐date a peak S2 metamorphic assemblage involving garnet, sillimanite, spinel, ilmenite, K‐feldspar and quartz. The earliest reaction textures involve spinel‐ and quartz‐bearing symplectites that enclose garnet and to a lesser extent sillimanite. The symplectic spinel and quartz are in places separated by later garnet and/or sillimanite coronas. The metamorphic effects of a later, D3, event are restricted to zones of moderate to high strain where a metamorphic assemblage of garnet, sillimanite, K‐feldspar, magnetite, ilmenite, quartz and biotite is preserved. Quantitative mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using Thermocalc 3.0 and the accompanying internally consistent dataset provide important constraints on the influence of TiO2 and Fe2O3 on biotite‐bearing and spinel‐bearing equilibria, respectively. Biotite‐bearing equilibria are shifted to higher temperatures and spinel‐bearing equilibria to higher pressures and lower temperatures in comparison to the equivalent equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The sequence of reaction textures involving spinel is consistent with a D2 P–T path that involved a small amount of decompression followed predominantly by cooling within a single mineral assemblage stability field. Thus, the reaction textures reflect changes in modal proportions within an equilibrium assemblage rather than the crossing of a univariant reaction. The D3 metamorphic assemblage is consistent with lower temperatures than those inferred for D2.  相似文献   

16.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

17.
Oxygen isotope ratios and rare earth element (REE) concentrations provide independent tests of competing models of injection v. anatexis for the origin of migmatites from amphibolite and granulite facies metasedimentary rocks of the Adirondack Mountains, New York. Values of δ18O and REE profiles were measured by ion microprobe in garnet–zircon pairs from 10 sample localities. Prior U–Pb SIMS dating of zircon grains indicates that inherited cores (1.7–1.2 Ga) are surrounded by overgrowths crystallized during the Grenville orogenic cycle (~1.2–1.0 Ga). Cathodoluminescence imaging records three populations of zircon: (i) featureless rounded ‘whole grains’ (interpreted as metamorphic or anatectic), and rhythmically zoned (igneous) cores truncated by rims that are either (ii) discordant rhythmically zoned (igneous) or (iii) unzoned (metamorphic or anatectic). These textural interpretations are supported by geochronology and oxygen isotope analysis. In both the amphibolite facies NW Adirondacks and the granulite facies SE Adirondacks, δ18O(Zrc) values in overgrowths and whole zircon are highly variable for metamorphic zircon (6.1–13.4‰; n = 95, 10 μm spot). In contrast, garnet is typically unzoned and δ18O(Grt) values are constant at each locality, differing only between leucosomes and corresponding melanosomes. None of the analysed metamorphic zircon–garnet pairs attained oxygen isotope equilibrium, indicating that zircon rims and garnet are not coeval. Furthermore, REE profiles from zircon rims indicate zircon growth in all regions was prior to significant garnet growth. Thus, petrological estimates from garnet equilibria (e.g. P–T) cannot be associated uncritically with ages determined from zircon. The unusually high δ18O values (>10‰) in zircon overgrowths from leucocratic layers are distinctly different from associated metaigneous rocks (δ18O(Zrc) < 10‰) indicating that these leucosomes are not injected magmas derived from known igneous rocks. Surrounding melanosomes have similarly high δ18O(Zrc) values, suggesting that leucosomes are related to surrounding melanosomes, and that these migmatites formed by anatexis of high δ18O metasedimentary rocks.  相似文献   

18.
Diagrams giving plagioclase and sanidine fractionation paths and liquid fractionation lines under conditions of ideal water-buffered fractional crystallization in the ternary feldspar system were constructed graphically using topological reasoning, and experimental data and calculated phase relationships from the literature. The liquidus lines and solidus or solvus paths are unique at constant P and a H 2O. The composition of a liquid evolves with time and moves along a fractionation line by removal of successive crystal fractions, whereas the compositions of each of the crystal fractions lie on and define a solidus or solvus path. Most but not all such water-buffered lines and paths differ only slightly from those in which water is free to build up during crystallization and a H 2O to increase, as in many rocks. Liquid compositions lying along liquidus fractionation lines are not normally preserved, unless erupted as aphyric lavas. The solidus or solvus paths may be preserved either as overgrowth zones in crystals (zoning paths) or as a series of crystal fractions in layered intrusions. The topologies of the lines and paths depend mainly on the nature of the two-feldspar boundary line separating the plagioclase and sanidine fields which is a function of P H 2O or a H 2O at constant P; increases in either progressively lower the liquidi and solidi and cause larger intersections of the solidi with the solvus. One-feldspar solidus paths at high P and a H 2O are simple, whereas they are complex and may bend back on themselves at low P H 2O or low a H 2O at high P. Two-feldspar paths may be simultaneous (cotectic) or sequential (peritectic). The former are simple and do not meet at high P and a H 2O, the critical solution line lying in the gap; they are complex and may bend back or overlap at low P H 2O or low a H 2O at high P, the position of the critical solution line being hard to determine. Liquids which have simultaneously fractionated two feldspars may fractionate only one towards the end, crystallization changing from subsolvus to hypersolvus. Sequential paths may involve overgrowth of an early feldspar by a later one, usually sanidine overgrowths on plagioclase, but plagioclase overgrowths on sanidine occur. These complexities explain in part the difficulties of unravelling the textural and compositional relationships of ternary feldspars in water-poor felsic igneous rocks (even in the absence of alteration or complex magma dynamics) and of trying to deduce phase relationships from natural occurrences of feldspars.C.R.P.G. contribution number 948  相似文献   

19.
The regional distribution of metamorphic mineral assemblages in Mesozoic carbonate rocks of the Western Hohe Tauern allows the mapping of isograds based on the appearance of biotite+calcite and biotite+zoisite+calcite. The latter isograd corresponds approximately to the thermal maximum of the alpidic metamorphism in the central part of this area. An estimate of P, T, X fluid conditions can be obtained from phase relations among muscovite, biotite, chlorite, margarite, tremolite, zoisite, anorthite, quartz, calcite, and dolomite in the system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2 which approximates the composition of marls. Calculations based on various experimental and thermodynamic data have been made with emphasis on phase relations pertinent to a group of carbonate rocks with very low Fe and Na contents in non-opaque minerals. Significant and opposite deviations from the phase relations for stochiometric end member mineral compositions are due to the substitutions F-OH and Mg+Si-2Al. Consistency of observed and calculated phase relations is favoured by high F-contents. For the majority of carbonate rocks in the high metamorphic zone, maximum temperatures around 550° C, minimum pressures of 4–6 kb, and relatively low XCO2 values within the stability field of zoisite and of biotite+calcite+quartz are indicated.  相似文献   

20.
The Tenda crystalline massif (northern Corsica) is a fragment of the western Corsica basement involved in the Alpine orogeny. Rhyolite dykes crosscutting the gabbroic complex of Bocca di Tenda (southern sector of the Tenda crystalline massif) show an unusual metamorphic mineral assemblage, defined by jadeite‐bearing (up to 46 mol percentage) aegirine, riebeckite, celadonite‐rich phengite (Si=3.50–3.65 apfu), quartz, albite and K‐feldspar. Jadeite‐bearing aegirine and riebeckite mostly occur as coronas around jadeite‐free aegirine and arfvedsonite, respectively, which both are relics of igneous origin. This metamorphic assemblage reflects the peralkaline compositions, which are characterised by anomalously high contents of SiO2 and Na2O, and negligible CaO and MgO. The evolved rocks of the gabbroic sequence (quartz‐diorites to tonalites) and the surrounding granitoids are characterised by the development of riebeckite/ferroglaucophane, epidote, celadonite‐rich phengite and albite, thus pointing to a metamorphic crystallization in the epidote‐blueschist facies. In all the studied rocks, metamorphic reactions were controlled by fluid‐assisted mass‐transfer through grain boundaries and microfractures. The different mineral assemblages allow the peak P–T metamorphic conditions to be constrained to between 0.8 GPa/300 °C and 1.1 GPa/500 °C. These estimates attest to a geothermal gradient (dT/dP) of 10–13 °C km?1 and indicate that the Tenda crystalline massif was buried to a minimum depth of 27 km during the Alpine orogeny. The blueschist facies recrystallization in the Tenda crystalline massif has been related to the cessation of an eastward‐dipping subduction event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号