首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate organic carbon found in sea foam and water samples from North Inlet, South Carolina, were examined for their δ13C isotopic composition. Sea foam particulate organic carbon (POC) δ13C values ranged from ?20.4 to ?24.6‰ (mean=?22.3‰) and water POC δ13C values ranged from ?21.0 to ?28.5‰ (mean= ?24.4‰). Temporal trends in sea foam and water POC indicate that δ13C values for both POC components are depleted in the colder months and enriched in the warmer months. Measurement of δ13C from potential sources for organic matter found in sea foam, combined with data on macroalgae productivity and phytoplankton biomass, indicates that macroalgae are the principal source of POC for sea foam in the colder months. In the warmer months, phytoplankton appear to be more important contributors. The observed water POC δ13C values were always depleted relative to foam POC δ13C values. This isotopic difference may result from chemical segregation during sea foam formation or may reflect DOC δ13C values from terrestrial origins.  相似文献   

2.
The first data are reported on the carbon isotopic composition of diamond crystals from the Grib pipe kimberlite deposit of the Archangelsk diamond province (ADP). The δ13C value of the crystals ranges from ?2.79 to ?9.61‰. The isotopic composition of carbon was determined in three zoned crystals (δ13C of ?5.8 ?6.96 ‰, ?5.64/ ?5.85 ‰, and ?5.94/ ?5.69 ‰), two “diamond in diamond” samples (diamond inclusion with δ13C of ?4.05 and ?6.34 ‰ in host diamond crystals with δ13C of ?8.05 and ?7.54 ‰, respectively), and two samples of coated diamonds (cores with δ13C of ?6.98 and ?6.78‰ and coats with δ13C of ?7.51 and ?8.01 ‰, respectively). δ13C values were obtained for individual diamond crystals from bort-type aggregates (δ13C of ?4.24/ ?4.05 ‰, ?6.58/ ?7.48 ‰, and ?5.48/ ?6.08 ‰). Correlations were examined between the carbon isotopic composition of diamonds and their crystal morphology; the color; the concentration of nitrogen, hydrogen, and platelet defects; and mineral inclusions content. It was supposed that the observed δ13C variations in the crystals are most likely related to the fractionation of carbon isotopes rather than to the heterogeneity of carbon sources involved in diamond formation. The isotopic characteristics of diamonds from the Grib pipe were compared with those of previously investigated diamonds from the Lomonosov deposit. It was found that diamonds from these relatively closely spaced kimberlite fields are different; this also indicates the existence of spatially localized peculiarities of isotope fractionation in processes accompanying diamond formation.  相似文献   

3.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

4.
岩浆去气作用碳硫同位素效应   总被引:6,自引:0,他引:6       下载免费PDF全文
 根据开放体系条件下的瑞利分馏原理,并考虑岩浆中可能溶解的合碳和含硫组分,从理论上定量模式了岩浆去气作用对火成岩碳、硫同位素组成的影响。结果表明,岩浆CO2去气作用能够导致岩石中碳酸盐显着亏损13C,其δ13C值能够从原始-5‰变化到-20‰(PDB);岩浆CH4去气作用则导致岩石中碳酸盐相对富集13C,其δ13C值能够从原始-5‰变化到+4‰。岩浆SO2去气作用可以导致岩石中硫化物显着亏损34S,其δ34S值能够从0‰变化到-8‰(CDT);岩浆H2S去气作用则导致岩石中的硫化物相对富集4S,其δ34S值能够从0‰变化到+6‰。因此,除源岩原始同位素不均一性和地壳物质混染能引起火成岩的碳、硫同位素组成发生较大变化外,岩浆去气作用也是重要原因之一。  相似文献   

5.
Influence of diet on the distribution of carbon isotopes in animals   总被引:4,自引:0,他引:4  
The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition.The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in δ13C by about 1‰ relative to the diet. In three of the four cases examined, the 13C enrichment of the whole body relative to the diet is balanced by a 13C depletion of the respired CO2. The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the δ13C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2‰. The relationship between the 13C/12C ratio of a tissue and the 13C/12C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the δ13C values of a biochemical fraction in an animal and in its diet may be as large as 3‰. The δ13C values of the biochemical components collagen, chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet.These results indicate that it will be possible to perform dietary analysis based on the determination of the 13C/12C ratio of animal carbon. Analysis of the total animal carbon will in most cases provide a better measure of diet than the analysis of individual tissues, biochemical fractions, or biochemical components. The limits of accuracy of this method will generally restrict its application to situations in which the diet is derived from sources with relatively large differences in their δ13C values, such as terrestrial vs aquatic organisms or C3 vs C4 plants. The method should be applicable to fossil as well as to living material.  相似文献   

6.
We report new δ13C ‐values data and N‐content and N‐aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray‐Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have δ13C ‐PDB‐values ranging from ‐28.7‰ to ‐16.9‰, and N‐contents from 151 to 589 atomic ppm. The δ13C and N‐content values for diamonds from the Luobusa chromitites are ‐29‰ to ‐15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray‐Iz chromitites show values varying from ‐27.6 ‰ to ‐21.6 ‰ in δ13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N‐contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced δ13C ‐variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N‐aggregation state and N‐content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.  相似文献   

7.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

8.
Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of ?13.5‰ to ?5.2‰ for δ13C and ?4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.  相似文献   

9.
We analysed isotopic compositions of metamorphic microdiamond secondary ion mass spectrometry. Typical microdiamonds in this dolomite marble show star-shaped morphologies (S-type) consisting of single-crystal cores and polycrystalline rims. Four S-type microdiamonds and two R-type microdiamonds (single crystals with rugged surfaces) were analysed using a 5 μm diameter ion beam. S-type microdiamonds have heterogeneous carbon isotopic compositions even in a single grain. Analysis of a typical S-type microdiamond (no. xx01-1-13) revealed clear difference in δ13C between core and rim. The rim shows lighter isotopic compositions ranging from??17.2‰ to??26.9‰, whereas the core is much heavier, with δ13C ranging from??9.3‰ to??13.0‰. The δ13C values of R-type microdiamonds fall into narrow ranges from??8.3‰ to??14.9‰ for no. xx01-1-10 and from??8.3‰ to??15.3‰ for no. xx01-1-16. These δ13C values are similar to those of the S-type microdiamond cores. The R-type probably formed at the same stage as the core of the S-type, whereas rim growth at a second stage did not occur or occurred very weakly in R-type microdiamonds. These carbon isotopic data support the two-stage growth of microdiamonds in the Kokchetav ultrahigh-pressure host rock. To explain the second stage growth of S-type microdiamonds, we postulate a simple fluid infiltration of light carbon from neighbouring gneisses into the dolomite marble.  相似文献   

10.
REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ^13 C and δ^18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ^13C-5.6--5.2‰ andδ^18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ^13 C and δ^18O values,especially the δ^18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ^13 C and δ^18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.  相似文献   

11.
《Chemical Geology》2006,225(1-2):137-155
Carbon stable isotopes from carbonate minerals (mainly dolomite) from six wells from the Lower Triassic Sherwood Sandstones of the Corrib Gas Field, Slyne Basin, west of Ireland, allow stratigraphic correlation. The results also provide information on palaeoenvironmental change during the deposition of these continental redbed sedimentary rocks. The Triassic reservoir rocks have been buried to > 4000 m and heated to > 165 °C and now contain methane-rich gas. Although the oxygen isotopic signal has been at least partially reset during burial and heating, a primary carbon isotopic signal appears to have survived diagenesis. The carbon isotope ratio varies from − 3.2‰ to + 2.1‰. All six wells show similar stratigraphic changes when all the carbon isotope data are plotted relative to a major playa horizon. δ13C increases from about − 3‰ at the base of the Sherwood to about + 2‰ 170 m above the base. δ13C then decreases to about − 2‰ for the next 70 m and remains steady for the following 50 m. The top 20 m of the Sherwood contains carbonate with a δ13C values decreasing to about − 3‰. The occurrence of a stratigraphically-correlatable carbon isotope pattern implies that the primary evolution signal has been preserved. The change in δ13C correlates with indicators of aridity and biological stress such that the highest δ13C values are in sedimentary rocks deposited in a playa lake (arid times); these rocks contain the greatest quantity of dolomite cement. Conversely, the lowest δ13C values correspond to sedimentary rocks deposited from well-developed rivers (relatively humid times) from the lowest quantity of dolomite cement. The same carbon isotope evolution has been found in another well in the Slyne basin and in Belgium, suggesting that the palaeoenvironmental isotope signal in the Triassic sedimentary rocks of the Corrib Field may have a regional significance.  相似文献   

12.
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers. To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter (SPOM) and bacteria in a highly contaminated urban river (the Nanming) and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in 13C and 15N and its C/N ratio was lower (δ13C: ? 33.2‰ ± 3.1‰; δ15N: ? 1.5‰ ± 1.2‰; C/N: 4.8 ± 0.6), while effluents showed higher 13C and 15N contents and C/N ratios (δ13C: ? 25‰ ± 2.1‰; δ15N: + 8.5‰ ± 1.1‰; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members (effluent detritus and bacterial biomass). Using a mixing model, bacterial biomass in the river was calculated to account for < 20% and < 56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen (< 7.4%) in the riverwater.  相似文献   

13.
Purbeckian (lowermost Cretaceous) peritidal carbonates are characterized by open marine, lagoonal, intertidal and lacustrine facies arranged in Milankovitch-type shallowing upward sequences. Shallowing upward sequences typically consist of 2–6 individual beds. The sequences may be (i) complete, (ii) incomplete or (ii) pedogenetically overprinted, reflecting the duration of subaerial exposure and/or the extent of erosion and pedogenetic modification at the cycle tops. The stable isotopic composition of the peritidal micrites reveals homogenous δ18O values attributed to diagenetic stabilization in a meteoric, water-buffered system. Carbon isotopes show three distinctly different carbon isotope patterns dependent on the completeness of the shallowing upward sequences. Complete shallowing upward sequences consist of 4–6 individual carbonate beds. The carbon isotope values show a facies-dependent pattern: open marine carbonate muds record enriched δ13C values of +0·28‰ while lagoonal (−0·82‰), intertidal (−2·46‰) and lacustrine micrites (−2·96‰) are increasingly depleted. This distinct pattern is explained by carbonate mud deposition in environments of differing salinity and marine influence. Incomplete sequences (2–5 carbonate beds) are characterized by depleted δ13C values below subaerial exposure surfaces that become progressively enriched in 13C with increasing depth. Pedogenetically overprinted sequences (1–3 carbonate beds) show strong 13C depletion throughout the sequence with little variation in the carbon isotopic composition. The depleted values (−4·5‰) of the pedogenetically altered micrites suggest that modification during subaerial exposure was associated with equilibration with meteoric solutions enriched in isotopically light soil gas CO2. The duration of subaerial exposure is the most crucial factor determining the extent of pedogenetic alterations, the completeness of the shallowing upward sequences and the carbon isotope pattern. The recorded patterns clearly illustrate that micrites have a good potential for the preservation of their primary carbon isotopic composition if the duration of subaerial exposure is rather brief. Otherwise, the recorded carbon isotope patterns may support sequence stratigraphic analysis by providing a refinement of the time-stratigraphic interpretation.  相似文献   

14.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

15.
The isotopic composition of calcite from travertine deposits of the Tokhana-Verkhnii hot spring in the Elbrus area shows broad variations in δ13C and δ18O (from +3.8 to +16.3‰ and from +24.6 to +28.1‰, respectively). The δ13C and δ18O values increase toward the sole of the travertine dome. The isotopically heaviest carbonates (δ13C of up to +16.3‰) were found near the bottom of the dome and composed ancient travertine, which are now not washed by mineral water. The scatter of the δ13C values of the fresh sample is slightly narrower: from +3.8 to +10‰. Calculations indicate that all carbonates of the Tokhana dome were not in equilibrium with spontaneous carbon dioxide released by the spring (\(\delta ^{13} C_{CO_2 } \) = ?8‰). To explain the generation of isotopically heavy travertine, a physicochemical model was developed for precipitation of Ca carbonates during the gradual degassing of the mineral water. The character of variations in the calculated δ13C values (from +5.5 to +13‰) is in good agreement with the tendency in the variations of the δ13C in the carbonate samples. The calculated and measured pH values are also consistent. Our results demonstrate that the isotopic composition of large travertine masses can be heterogeneous, and this should be taken into account during paleoclimatic and paleohydrogeological reconstruction.  相似文献   

16.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

17.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

18.
浙江长兴二叠系和三叠系界限地层的碳同位素   总被引:15,自引:0,他引:15       下载免费PDF全文
研究海相碳酸盐岩的碳和氧同位素已有三十多年,积累了数千个数据,其目的在于研究古海洋碳和氧同位素的演变。在此期间,一部分研究者认为,海相碳酸盐岩的δ13C值在0±2范围内变化,未表现出与地质时代相关的变化趋势(Clayton和Degens,1959;Degens和Epstein,1962;Keith和Weber,1964;Galimov,1965;Becker和Clayton,1972;Schidlowski等,1975)。但是,另一些学者,如Jeffery等(1955),Baertschi(1975),Compston(1960),Weber(1967),Garrels和Parry(1974)却认为,海相碳酸盐岩的δ13C值随地质时代而有规律地变化。  相似文献   

19.
UWE BRAND 《Sedimentology》1982,29(1):139-147
The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water. The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water. The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water. Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition.  相似文献   

20.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号