首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Joanne  Poon  Clive S.  Fraser  Zhang  Chunsun  Zhang  Li  Armin  Gruen 《The Photogrammetric Record》2005,20(110):162-171
The growing applications of digital surface models (DSMs) for object detection, segmentation and representation of terrestrial landscapes have provided impetus for further automation of 3D spatial information extraction processes. While new technologies such as lidar are available for almost instant DSM generation, the use of stereoscopic high-resolution satellite imagery (HRSI), coupled with image matching, affords cost-effective measurement of surface topography over large coverage areas. This investigation explores the potential of IKONOS Geo stereo imagery for producing DSMs using an alternative sensor orientation model, namely bias-corrected rational polynomial coefficients (RPCs), and a hybrid image-matching algorithm. To serve both as a reference surface and a basis for comparison, a lidar DSM was employed in the Hobart testfield, a region of differing terrain types and slope. In order to take topographic variation within the modelled surface into account, the lidar strip was divided into separate sub-areas representing differing land cover types. It is shown that over topographically diverse areas, heighting accuracy to better than 3 pixels can be readily achieved. Results improve markedly in feature-rich open and relatively flat terrain, with sub-pixel accuracy being achieved at check points surveyed using the global positioning system (GPS). This assessment demonstrates that the outlook for DSM generation from HRSI is very promising.  相似文献   

2.
Lidar and photogrammetry have both been evaluated for detecting shortterm coastal change using the Black Ven mudslide, Dorset as a case study. A lidar-generated digital elevation model (DEM) was obtained and initially compared with a DEM generated using available 1:7500 scale aerial photography and automated digital photogrammetry. The quality of these two data sets was assessed using a third DEM, derived using a total station and conventional ground survey methods. The vertical accuracies (rms error) of the lidar and photogrammetry were 0.26m and 0.43m respectively, although both data sets displayed a tendency to generate heights slightly lower than the elevation of the terrain surface. The quality of the two data sets was then assessed with respect to local slope angle. The accuracy of photogrammetrically derived elevations varied with slope and more so than in the case of lidar
From these basic tests, lidar has proved to be more accurate than photogrammetry for soft-cliff. monitoring. Further research is required to establish whether this trend is applicable to other data sets and specifically for photogrammetric data acquired using larger scale imagery  相似文献   

3.
The orbital and the rational polynomial coefficients (RPC) models are the two most commonly used models to compute a three-dimensional coordinates from an image stereo-pair. But it is still confusing that with the identical user provided inputs, which one of these two models provides more accurate digital elevation model (DEM), especially for mountainous terrain. This study aimed to find out the answer by evaluating the impact of used models on the vertical accuracy of DEM extracted from Cartosat-1 stereo data. We used high-accuracy photogrammetric DEM as the reference DEM. Apart from general variations in statistics, surprisingly in a few instances, both the DEMs provided contrasting results, thus proving the significance of this study. The computed root mean square errors and linear error at 90% (LE90) were lower in case of RPC DEM for various classes of slope, aspect and land cover, thus suggesting its better relative accuracy.  相似文献   

4.
一种改进的基于坡度变化的机载激光雷达点云滤波方法   总被引:2,自引:0,他引:2  
机载激光点云数据滤波是获取高精度数字表面模型和数字高程模型的关键。本文分析了几种重要的滤波算法,在研究基于坡度变化的滤波算法的基础上,提出一种改进的分块滤波处理的方法。实验表明:该方法能有效对点云数据进行分类。  相似文献   

5.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

6.
Digital elevation models (DEMs) are essential to various applications in topography, geomorphology, hydrology, and ecology. The Shuttle Radar Topographic Mission (SRTM) DEM data set is one of the most complete and most widely used DEM data sets; it provides accurate information on elevations over bare land areas. However, the accuracy of SRTM data over vegetated mountain areas is relatively low as a result of the high relief and the penetration limitation of the C-band used for obtaining global DEM products. The objective of this study is to assess the performance of SRTM DEMs and correct them over vegetated mountain areas with small-footprint airborne Light Detection and Ranging (Lidar) data, which can develop elevation products and vegetation products [e.g., vegetation height, Leaf Area Index (LAI)] of high accuracy. The assessing results show that SRTM elevations are systematically higher than those of the actual land surfaces over vegetated mountain areas. The mean difference between SRTM DEM and Lidar DEM increases with vegetation height, whereas the standard deviation of the difference increases with slope. To improve the accuracy of SRTM DEM over vegetated mountain areas, a regression model between the SRTM elevation bias and vegetation height, LAI, and slope was developed based on one control site. Without changing any coefficients, this model was proved to be applicable in all the nine study sites, which have various topography and vegetation conditions. The mean bias of the corrected SRTM DEM at the nine study sites using this model (absolute value) is 89% smaller than that of the original SRTM DEM, and the standard deviation of the corrected SRTM elevation bias is 11% smaller.  相似文献   

7.
8.
平坦地区DSM到DEM的试验   总被引:2,自引:0,他引:2  
讨论了平坦地区根据影像匹配的结果将DSM修正成DEM的方法,针对平坦地区一般都有建筑物和树木,利用其本身的地形特点,提出附近最小值方法自动修正DSM以获得近似正确DEM的方法。并对试验结果的精度进行了检查,发现试验的结果比影像匹配后的结果要精确许多,将建筑物和树木等植被的高程去掉,得到比较精确的DEM数据。  相似文献   

9.
作为我国首颗民用立体测绘卫星数据产品,ZY-3 DSM对于我国地学分析具有极其重要的作用。本文在顾及地貌情况前提下,选取云南省高海拔山区为试验区,辅以1∶10 000野外实测地形图DEM为参考值,将分辨率为15 m的ZY-3 DSM与90 m的SRTM DEM从高程精度和地形精度进行较为全面的数据质量比较。结果表明:ZY-3 DSM在高程精度和地形精度均有更好的表现。总体看来,ZY-3 DSM数据质量更高,具有更广泛的利用价值。  相似文献   

10.
Estimates of canopy closure have many important uses in forest management and ecological research. Field measurements, however, are typically not practical to acquire over expansive areas or for large numbers of locations. This problem has been addressed, in recent years, through the use of airborne light detection and ranging (LiDAR) technology which has proven effective in modeling canopy closure remotely. The techniques developed to use LiDAR for this purpose have been designed and evaluated for datasets acquired during leaf-on conditions. However, a large number of LiDAR datasets are acquired during leaf-off conditions since their primary purpose is to generate bare-earth Digital Elevation Models. In this paper, we develop and evaluate techniques for leveraging small-footprint leaf-off LiDAR data to model leaf-on canopy closure in temperate deciduous forests.We evaluate three techniques for modeling canopy closure: (1) the canopy-to-total-return-ratio (CTRR), (2) the canopy-to-total-pixel-ratio (CTPR), and (3) the hemispherical-viewshed (HV). The first technique has been used widely, in various forms, and has been shown to be effective with leaf-on LiDAR datasets. The CTRR technique that we tested uses the first-return LiDAR data only. The latter two techniques are new contributions that we develop and present in this paper. These techniques use Canopy Height Models (CHM) to detect significant gaps in the forest canopy which are of primary importance in estimating closure.The techniques we tested each showed good promise for predicting canopy closure using leaf-off LiDAR data with the CTPR and HV models having particularly high correlations with closure estimates from hemispherical photographs. The CTRR model had performance on par with results from previous studies that used leaf-on LiDAR, although, with leaf-off data the model tended to be negatively biased with respect to species having simple and compound leaf types and positively biased for coniferous species. The CTPR and HV models also showed some slight negative biases for compound-leaf species. The biases for the CTPR and HV models were mitigated when the CHM data were smoothed to fill in small gaps. The CHM-based models were robust to changes in the CHM model resolution which suggests that these methods may be applicable to a variety of small-footprint LiDAR datasets. In this research, the new CTPR and HV methods showed a strong ability to predict canopy closure using leaf-off data, however, future work will be needed to test the applicability of the models to variations in LiDAR datasets, forest types, and topography.  相似文献   

11.
针对传统航空影像获取的DSM在立面及局部地面、建筑物屋顶空间信息的不足,获取高精度DEM较为困难的问题,提出了基于倾斜影像提取高精度DEM的方法。首先对倾斜影像获取的点云DSM结构进行分析,得出了DSM具有几何约束特点,能够在城区很好地区分地面点和地物点;然后指出对DSM滤波处理是获取高精度数字高程模型(DEM)的关键技术,提出了基于法向量差值区域生长分割TIN的滤波方法;最后选取吉林省敦化市的倾斜影像数据进行了滤波试验和算法验证。试验结果表明,该方法能够快速、有效地滤除不同尺寸的建筑物、植被和其他地物,获取高精度DEM。  相似文献   

12.
为了评价国产资源三号测绘卫星DSM数据精度,在顾及地貌类型的情况下,以涵盖平原、台地、丘陵等地貌的高海拔山区为研究案例,并以1∶1万实测地形图DEM为假定真值,以90m分辨率SRTM DEM为评价参照,从高程精度和地形描述精度两个方面,对15m分辨率ZY-3DSM进行精度评价分析。研究结果表明:ZY-3DSM高程精度优于SRTM DEM,前者高程中误差仅为后者的1/6;就地形描述精度来讲,ZY-3DSM与SRTM DEM相比,其地形描述精度更接近理论值,前者RMS Et实际值仅为理论值0.99倍,而后者的实际值却是理论值5.13倍。由此看来,ZY-3DSM数据精度整体上高于SRTM DEM。  相似文献   

13.
Information loss is caused when a surface is sampled with a finite interval, such as in the production of a digital elevation model (DEM). This information loss can become the dominant part of the error in a DEM. The ability to quantify information loss enables guidance to be provided for an appropriate choice of grid interval and better accuracy assessment for the DEM. With the use of digital photogrammetric systems, evaluation of information loss has become much easier. This paper describes three methods of evaluating information loss. An example is given of the method which is most appropriate for use with a digital photogrammetric system, based on rock cliff surface data and the VirtuoZo system.  相似文献   

14.
This paper assesses the feasibility of estimating water levels using digital photogrammetry. A common problem during an extreme flood event is that automated water level recorders do not record the highest water levels, as a result of instrument malfunctioning. This paper explores two possible solutions to this problem based upon data acquired using synoptic remote sensing methods. The first method requires: (a) high-resolution elevation data (for example, in the form of a digital elevation model for the floodplain); and (b) information on the planimetric position of the maximum flood extent, such as from debris lines (known as wrack lines) visible on aerial imagery flown after the event. The planimetric data can then be used to segment the topographic data in order to identify water level elevations. The second method uses a digitial photogrammetric approach and is suitable where no topographic data are available, but aerial imagery is available, flown after the event. Provided this imagery is of the right scale, digital photogrammetric analysis may be used to identify the elevations of wrack lines visible on the imagery. In this paper, the second of these options is compared with the first. The research shows that desktop photogrammetric methods, using 1:4500 scale imagery, can yield water level estimates that are precise to ±0·147 m, on the basis of check data obtained from lidar data. This is a worst possible estimate of the acquired precision given uncertainties in the lidar data. When compared with the first option, based upon segmenting lidar data using flood outlines, the photogrammetric approach was found to be preferable given both the quality of the lidar and uncertainties over how to segment it.  相似文献   

15.
随着摄影测量技术的成熟和人们对摄影测量产品应用的要求不断提高,真正射影像在工程与人们生活中扮演越来越重要的角色。生成高质量真正射影像的关键在于如何获取高精度的DSM。目前修正和改善DSM误差的方法普遍存在费力费时、精度缺乏保证及任意性等问题。本文针对DSM精度的修正问题提出了一种新的方法,即基于投影影像的概念,将空间点位在投影影像上的投影轨迹线作为几何约束条件,直接对现有DSM的高程进行修正的方法。通过获取高精度的DSM,进而生成更为精确的真正射影像。本文通过理论推导、单点高程和多点高程修正试验,验证了提出的新方法直观简单,适用性强,具有一定的实际应用价值。  相似文献   

16.
在无控制点的卫星影像正射校正中,大多采用DSM/DEM数据作为辅助数据来消除或限制因地形起伏引起的形变,然而经不同格网密度的DSM/DEM正射校正后的影像对后续处理会产生不同程度的影响,如对地物分类精度产生影响。针对这一问题,本文分别采用不同的DSM/DEM数据(China DSM 15 m、ASTER GDEM 30 m和SRTM 90 m)对资源三号影像进行正射校正,然后对正射校正后影像利用支持向量机进行分类,比较正射校正后影像结果的分类精度。结果表明:在相同重采样方法下,影像经China DSM 15 m DSM正射校正后结果的分类精度优于ASTER GDEM 30 m DEM和SRTM 90 m DEM。  相似文献   

17.
Accuracy assessment of GDEM,SRTM, and DLR-SRTM in Northeastern China   总被引:1,自引:0,他引:1  
This paper compares the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Shuttle Radar Topography Mission (SRTM) C-band and German Aerospace Centre (DLR)-SRTM X-band digital elevation models (DEMs) with the Ziyuan 3 (ZY-3) stereoscopic DEM and ground control points (GCPs). To date, the horizontal error of these DEMs has received little attention in accuracy assessments. Using the ZY-3 DEM as reference, this study examines (1) the horizontal offset between the three DEMs and the reference DEM using the normalised cross-correlation method, (2) the vertical accuracy of those DEMs using kinematic GPS data and (3) the relationship between the three DEMs and the reference ZY-3 DEM. The results show that the SRTM and DLR-SRTM have greater vertical accuracy after applying horizontal offset correction, whereas the vertical accuracy of the ASTER GDEM is less than the other two DEMs. These methods and results can be useful for researchers who use DEMs for various applications.  相似文献   

18.
The increased availability of multi-sensor data, and elevation information in particular, leads to the need of advanced processing methods. In the context of landscape modeling tasks, we concentrate on one central component, the extraction of terrain surface from a Digital Surface Model (DSM). In contrast to conventional mathematical grey value morphology approaches (filtering methods) or to stochastical procedures, we propose an alternative methodology for this task by applying a region-based and multi-scale approach. It consists of segmentation and follow-up fuzzy logic classification based on several features derived from elevation and multi-spectral image data. The satisfying results obtained with a multi-sensor as well as with other datasets show the applicability of the approach.  相似文献   

19.
本文采用APOLLO影像模拟生成的嫦娥一号三线阵CCD影像及其卫星的轨道与姿态模拟参数,按等效框幅像片(EFP)法和自由外方位元素(FEO)法分别计算摄影测量坐标系内的外方位元素及模型点坐标,生成了数字高程模型(DEM)、等高线、正射影像及三维地形仿真影像,评估了从模拟月球三线阵CCD影像生成的摄影测量成果的预期精度。  相似文献   

20.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号