首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several series of one-dimensional heat and moisture flow tests were performed to examine the moisture and temperature distributions in the buffer material compacted to a dry density of 1.67 Mg m−3 and water content of 17.7%. In all tests, water was allowed to infiltrate into a horizontal soil column from one end under a constant hydrostatic head of 276 kPa. Also the specimens were heated from the other end by the heater to a constant temperature.

It is experimentally demonstrated that the moisture moves from both ends toward the mid part of the soil column due to both thermal gradient from one end and hydraulic gradient from the other end. It was observed that, in spite of no overall volume change, local volume change occurs in the system. The measured temperatures along the length of the specimen indicate that temperature distributions stabilize within a short period of time. The time required for the temperature to stabilize decreases as the heater skin temperature increases.

The diffusivity parameters are calculated using the measured moisture and temperature profiles combined with the finite difference method. Powell's optimization algorithm was used to determine the material parameters. Good agreements between experimentally measured and calibrated volumetric water content shows that the diffusion parameters can be expressed in a linear function of the volumetric water content and temperature.  相似文献   


2.
The paper presents the application of a Galerkin finite-element technique for the numerical solution of the differential equations governing coupled heat flow and moisture movement in a clay buffer. Attention is focussed on the axisymmetric modelling of the hygro-thermal processes encountered in the single borehole emplacement configuration developed for laboratory simulation. The numerical results derived for the time-dependent temperature distributions within the granite block and the residual moisture distribution within the buffer are compared with the respective experimental results.  相似文献   

3.
To determine moisture movement and heat transfer through an unsaturated soil under temperature and volumetric water content gradients, it is necessary to have knowledge of phenomenological coefficients of the soil. However, in unsaturated flow, i.e. flow through unsaturated soil, these phenomenological coefficients are not constants, but vary with volumetric water content as well as temperature. In this paper, an identification technique is proposed for evaluation of the phenomenological coefficients. The phenomeno-logical coefficients are first assumed to be certain kinds of functions of volumetric water content and temperature. The choice of the functional forms is based on an understanding of the physical situation, and previous knowledge of water flow in the isothermal case. The constant parameters associated with the functional forms are evaluated through the use of the identification technique. Once these phenomenological coefficients are obtained as certain functions of the volumetric water content and the temperature for a specified soil, analysis of coupled moisture flow and heat transfer in the unsaturated soil can proceed.  相似文献   

4.
张玉军 《岩土力学》2007,28(7):1292-1297
使用建立的饱和-非饱和介质中热-水-应力耦合弹塑性模型,取一组真实的缓冲材料、岩体及贮存容器(用加热器代替)的物理力学指标作为基本计算条件,以一个假想的核废料处置库为模拟对象,就高、中、低3种渗透系数进行了二维有限元数值分析,考察了近场的渗流速度大小及方向的变化,认识到:在其他计算参数相同的条件下,缓冲材料的渗透系数越高,近场的渗流速度越大,缓冲层达到饱和状态也越快;当缓冲层达到饱和状态后,如果玻璃固化体继续放热,有可能使得近场的温度梯度的作用强于水力梯度的作用,导致渗流速度方向发生逆转,即水分由内向外迁移;依渗透系数不同,其渗流速度的大小、方向有显著差异,这也势必引起放射性核素随地下水流动扩散的复杂多变。  相似文献   

5.
许韬  白冰 《岩土力学》2018,39(10):3853-3862
为了研究热源温度和外界水压对缓冲层中水-热迁移规律的影响,以GMZ膨润土为例,从基于势能的非饱和土的水-热迁移控制方程出发,考虑了蒸发效应的影响,得到了水-热耦合的方程组,采用改进的光滑粒子流体动力学(SPH)算法,能够对每一处土体根据不同时刻的不同状态实时更新计算参数,得到参数变化的水-热耦合解。计算结果表明:土的物理性质参数与土体的温度和饱和度密切相关,是否考虑这些参数的变化会对计算结果产生较大影响;核废料释放的热量能够在较短的时间内扩散到外边界,水分迁移的速度则相对慢很多;缓冲层温度的升高会加快水分的迁移速度,外界水压对温度的分布则影响较小。  相似文献   

6.
为探讨温度变化对黄土水力学参数的影响,利用自制的变温下饱和-非饱和水力学参数测定装置结合理论探讨,分析了不同温度下黄土的渗透系数、比容水量和扩散的变化规律。结果表明:黄土的饱和渗透系数随着温度的增加而递增,冻融交替循环次数也是影响饱和渗透系数的重要因素;黄土非饱和渗透系数和扩散率是温度和含水率的函数,而比水容量是含水率的函数。水动力黏滞系数随温度增加而减小是上述参数增大的关键因素。  相似文献   

7.
饶登宇  白冰  陈佩佩 《岩土力学》2018,39(12):4527-4536
在考虑相变的热能平衡方程和非饱和水分迁移质量控制方程的基础上,建立温度场-水分场的耦合模型,并采用一种无网格粒子算法(SPH)进行数值求解。其中,耦合方程中考虑了水流传热以及温度势对水流的直接驱动,在不考虑相变的情况下,该耦合模型可退化为常温下的水-热耦合模型,故可用于模拟冻融循环的相关问题。从求解热能平衡方程中的含冰量出发,实现解耦并对半无限单向冻结条件下介质内非稳态温度场和体积含水率分布场进行模拟,将耦合作用下的温度场与不耦合的解析解进行对比,反映出水分迁移对温度场存在较大影响。最后,求解了路基边坡在季节性周期温度边界下,温度场、水分场分布的演变规律,并评估了边坡阴阳面受热不均对水热两场分布的影响。计算结果基本能反映土冻结相变的实际物理过程,光滑粒子算法可以用于尝试解决冻土领域的其他相关问题。  相似文献   

8.
为了研究影响地埋管周围土壤冻结的因素,文章建立了模拟严寒地区热失衡状态下地源热泵冬季运行情况的实验装置。实验研究了进口流体温度、土壤体积含水率和土壤初始温度对地埋管周围土壤冻结的影响。结果表明:进口流体温度变化改善了埋管周围的温度场,有利于埋管换热器换热;随着土壤初始温度升高,减小了土壤物性参数的变化,增加了地埋管换热器的换热量;土壤体积含水率的增加,强化了周围土壤与地埋管换热器的换热作用,有利于提高地埋管的出口流体温度和取热值。  相似文献   

9.
宋存牛  王选仓 《冰川冻土》2007,29(6):997-1003
基于Harlan模型和Darcy定律,并考虑温度梯度对水分迁移影响、温度和含水量对水热参数影响以及各种环境气候因素的影响,建立了完全依赖气象资料和水热参数的风积沙土路基冻结过程中水热耦合迁移数学模型,采用全隐式有限差分格式和TDMA迭代法对内蒙古锡林浩特地区沙漠公路207国道K135+000处冻结期间路基水热迁移规律进行了数值模拟.结果表明:该地区道路冻结深度随时间近似线性变化,冻结速度达到2~3 cm·d-1,最大冻深为3 m左右,冻融时间约为180 d;水分迁移主要发生在冻结锋面附近,从未冻区向冻结区迁移,且随着冻结锋面前移,迁移量逐渐增大;整个冻融期间最大冻深底部层位含水量变化较大,路面下0~50 cm范围内温度变化比较剧烈.  相似文献   

10.
川南煤层甲烷解吸动力学影响因素实验研究   总被引:1,自引:0,他引:1  
为了系统研究煤层气(甲烷)解吸动力学的影响因素,选用川南地区的无烟煤,设计了不同压力、温度、粒度和湿度下的煤层气解吸动力学实验。采用高温高压煤层气吸附/解吸测试系统进行实验,并拟合实验结果获得了不同条件下的扩散系数。研究表明:压力和温度越高,甲烷解吸量和解吸速率越大;粒度越大,甲烷解吸量和解吸速率越小;低于平衡水含量时,湿度增大,甲烷解吸量和解吸速率降低;甲烷扩散系数拟合结果揭示,扩散系数随压力增高而减小,随温度升高而增大,随湿度增大而减小。   相似文献   

11.
The soil thermodynamic parameters, including thermal conductivity, diffusivity and volumetric capacity within the active layer on the northern Tibetan Plateau, were calculated using the measured data of soil temperature gradient, heat flux, and moisture at four stations from October 2003 to September 2004. The results showed that the soil thermodynamic parameters exhibited clear seasonal fluctuation. The thermal conductivity and diffusivity in summer and autumn at Beiluhe, Kexinling, and Tongtianhe were larger than those in winter. The volumetric thermal capacity causes an opposite change; it was larger in autumn and winter than in summer. In spring, the soil thermal conductivity at the Kekexili station was larger than that in summer. Generally, fine-grained soils and lower saturation degrees in the topsoil might be a reason for the lower soil thermal conductivity in winter. For a given soil, soil moisture was the main factor influencing the thermodynamic parameters. The unfrozen water content that existed in frozen soils greatly affected the soil thermal conductivity, whose contribution rate was estimated to be 55 %. The thermodynamic parameters of frozen soils could be expressed as a function of soil temperature, volumetric ice content and soil salinity, while for the unfrozen ground the soil moisture content is the dominant factor for those thermal parameters. As for the soil thermal diffusivity, there exists a critical value of soil moisture content. When the soil moisture content becomes less than a critical value, the soil thermal diffusivity increases as the soil moisture content rises.  相似文献   

12.
评估两类模式对陆面状态的模拟和估算   总被引:1,自引:0,他引:1  
针对夏季土壤变干过程,利用观测系统模拟试验,比较离线的陆面模式(LSM)和耦合大气边界层的陆面模式(SCM)对土壤温度、湿度和地表热通量等陆面状态的模拟,然后借助数据同化方法,评估2类模式对陆面状态的估算能力.结果显示:2类模式除对地表长波辐射和感热通量的模拟差别较大外,对其余量则较小;只同化表层土壤湿度观测时,LSM对土壤湿度和感热通量的估算好于SCM,对土壤温度的估算则相反,而对潜热通量估算的差距很小;同时同化表层土壤温度、湿度观测会使地表热通量的估算差距增大;最后对2类模式不同表现的可能原因进行分析讨论.上述数值模拟和同化结果:当用某一类模式的模拟结果或同化产品为另一类不同模式提供初边界条件时必须注意它们之间的差异,避免出现输入量引起的模式状态量间的动力不协调现象.  相似文献   

13.
温度梯度、含水率梯度和压力梯度对非饱和土体中的水热迁移有重要影响。用非饱和黄土填筑室内模型,通入0.10MPa高温水蒸气,研究蒸汽压梯度、温度梯度和含水率梯度耦合作用下的水热迁移规律。结果表明:在水蒸气迁移范围之内,土体的升温速率、增湿速率和增湿程度较大,以蒸汽传热和压力梯度驱动的水蒸气增湿为主。而在水蒸气未到位置,以温度梯度引起的热传导和含水率梯度与温度梯度耦合驱动的水热迁移为主;水蒸气迁移时,受土颗粒阻碍和蒸汽压消散的影响,土体升温速率、增湿速率和温度传导速率均随径向距离的增大而减小,且增湿速率小于升温速率;水蒸气增湿土体的最大含水率接近最优含水率,增湿效果较好,可有效提高一定范围内土体的压实性能;基于模型试验边界条件,确定含湿毛细多孔介质中二维热湿迁移方程的一组代数显式特解,并以20 cm测点为例,将温度和含水率实测值和计算值进行对比分析。研究结果可为非饱和黄土水-汽-热耦合传输规律和水蒸气增湿新技术研究提供理论支持。  相似文献   

14.
15.
This study was done to evaluate a phenomenological approach for determining the coupled heat and water diffusion parameters. This technique requires the use of both theory and experimental data. The transport equation was solved analytically using nondimensional analysis. The calculated diffusion parameters of a compacted sand–bentonite-based material are presented. The agreement between the back calculated values and the experimental volumetric water content profiles was good. Practical application of the technique is also discussed.  相似文献   

16.
Two series of freezing column tests with distilled water and municipal solid waste leachate were investigated, using illitic silty clay. Temperature distributions along the freezing column were recorded as a function of distance and time. Unfrozen moisture content and osmotic pressures as a function of temperature were calculated. It was shown that temperature distributions as a function of distance and time were similar in all tests, probably as a result of the limited amount of moisture intake. The amount of moisture intake was directly related to freezing time and temperature gradient in the freezing column. Unfrozen moisture contents, ion concentrations and temperature gradients were identified as the controlling parameters that contributed to the boundary layer transport (BLT) of metal ions in frozen specimens. Na+ concentration profiles were mostly dependent on water movement in the freezing column. The behaviour of Ca2+ and Mg2+ cations was similar to Na+; their concentrations in the soil solution decreased with freezing time due to ion exchange. Temperature, moisture content in an unfrozen boundary layer (UBL), and concentration gradient were taken into consideration in the development of a boundary layer transport model (BLTM). Based on the experimental results and Powell's optimization technique, the diffusivity parameters of various metal ions were calculated. Comparison of experimental and predicted results indicated that the BLTM can predict the migration of metal ions in UBL.  相似文献   

17.
In this study, a capillary barrier system was designed and tested for an arid land environment. To simulate arid land conditions of high temperature and sub-irrigation systems, the barrier was subjected to thermal and hydraulic gradients in opposite directions; to test the barrier system under these severe conditions, an experimental apparatus was designed and fabricated. The multilayer capillary barrier consisted of three layers made of silica sand, a mixture of sand and bentonite in equal portions, and a mixture of clay (25%) and aggregate (75%). Several one dimensional coupled heat and moisture tests were performed. Temperature variations along the thickness of the barrier were recorded as a function of time, and at the end of each test, the barrier was sliced into small sections, for the determination of volumetric water content as a function of distance from the heat source. The experimental results were discussed in view of the barrier's intended purpose of its ability to store moisture for long time durations. Coupled heat and moisture flow equations were developed and solved numerically via a finite difference method. Diffusivity parameters were calculated by using experimental results, a numerical model, and Powell's conjugate directions method of nonlinear optimization. The model was calibrated and the results were discussed. Good agreement between calculated and experimental results was obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The subject of this paper is the nonlinear analysis of heat and moisture transfer in partly saturated soil. In particular, an extension of the previous work of the author to two-dimensional applications is presented. Problems of greater complexity and engineering significance can hence be solved. The theoretical basis of the problem is first outlined before the two-dimensional formulation of the numerical solution is given. The finite element method is employed to give the spatial distributions of the variables, with a finite difference scheme being used to predict the temporal variations. The method allows the nonlinear nature of the soil parameters to be modelled, predictions being given of the coupled transient simultaneous transfer of heat and volumetric moisture content. The two-dimensional nature of the work is illustrated for the case of surface evaporative soil moisture losses from sloping ground. Subsoil conditions of a uniform deposit of loam are considered with values of representative material parameters assumed after a literature search. The coupled nature of heat and mass transfer is illustrated by means of an analysis of the moisture migration patterns that occur. Two-dimensional moisture flow, out of and into the soil, is shown to take place.  相似文献   

19.
An analysis of coupled heat and moisture movement in unsaturated soil in terms of the fundamental potentials for flow is examined. The approach adopted is based on the assumption that the total potential for liquid flow consists of two components, the elevation and the capillary potential. The fundamental potentials employed in the work are, therefore, temperature and capillary potential. The full theoretical formulation of the problem is presented, together with full details of the solution algorithm employed. Spatial discretization is achieved via the use of the finite element method, with the time-varying behaviour described by a finite difference technique. Soil parameter variations as functions of both temperature and moisture content are included in a one-dimensional approach. The work is applied to a practical engineering problem, namely heat and mass transfer in the upper layers of a soil stratum. This problem is of importance to the utilities, since many services are buried in this zone. Material parameters obtained from an associated programme of experimental work are employed. Moisture content and temperature profiles indicating the extent and rate of penetration of drying and heating fronts are produced.  相似文献   

20.
The active layer in permafrost regions plays an important role in energy exchange between permafrost and atmosphere. Rainfall is one of the dominant factors affecting thermal-moisture dynamics of the active layer. To better understand the thermal-moisture dynamics and the interaction between rainfall and the active layer in-detail, in situ experiment was carried out and soil temperature, soil moisture and soil heat flux of the active layer were measured from 2007 to 2009. The observation data demonstrated that the volumetric soil water content of the active layer remained fairly constant during the winter and had a notable fluctuation resulted from evapotranspiration and rewetting from rainfall events in summer. The daily variation amplitude of soil temperature and soil heat flux in summer was bigger than that in winter. Soil moisture content increased and soil temperature decreased after rainfall. Rainfall in summer led to the change of surface energy balance and caused subsurface soil cooling. The convective heat transfer from water infiltration reduced the temperature gradient along depth and changed near-surface heat fluxes. The increase in rainfall may mitigate permafrost degradation on the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号