首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The problem of coherent reflection of an acoustic plane wave from a seabed consisting of a randomly inhomogeneous sediment layer overlying a uniform elastic sea floor is considered in this analysis. The random perturbation in the sediment layer is attributable to the sound-speed variations, resulting in volume scattering due to medium inhomogeneities. An approach based upon perturbation theory, combining with a derived Green's function for a slab bounded above and below, respectively, by a fluid and an elastic half-space, is employed to obtain an analytic solution for the coherent field in the sediment layer. A linear system is then constructed to facilitate the computation of the coherent reflection field. The results of the coherent reflection coefficient for various sediment randomness, frequency, sediment thickness, and sea floor elasticity have been numerically generated and analyzed. It is found that the higher/larger the randomness, frequency, thickness, and shear-wave speed, the lower is the coherent reflection. Physical interpretations for the characteristics of the various results are provided.  相似文献   

2.
This paper considers acoustic plane wave scattering from a rough seabed on a transition sediment layer overlying an elastic sea basement. The transition sediment layer is assumed to be fluid-like, with density and sound speed distributions behaving as generalized-exponential and inverse-square functions, respectively. This specific class of density and sound speed profiles deserves special attentions not only because it is geologically realistic, but also renders analytical solutions to the Helmholtz equation, making it particularly useful in the study of ocean and seabed acoustics. Based upon a boundary perturbation approach, the computational algorithm for the spatial spectrum in terms of the power spectral density of the scattered field has been developed and implemented. The results have shown that, while the coherent field mainly depends upon the gross structure of the seabed roughness, e.g., RMS roughness, the scattered field is significantly affected by the details of the roughness distributions specialized by the roughness power spectrum and the spatial correlation length of the rough surface. The dependence of the power spectral density of the scattered field on the various types of sediment stratifications, including the constant and the k2-linear sound speed distributions, is also included in the analysis.  相似文献   

3.
Acoustic scattering of a plane wave incident upon a rough surface over a transition fluid layer within which both the density and sound speed vary with depth is considered. A theory based upon a boundary perturbation method has been applied to a typical seabed environment to study the power spectral density representing the energy distribution of the scattered field over the space. The effects of frequency and roughness properties, including the roughness height, spatial correlation, and power spectrum, on the power spectral density have been investigated. The results demonstrate that the power spectral density of the scattered field depends upon all the aforementioned parameters, particularly the correlation length and the power spectrum of the rough surface, a conclusion in distinct contrast to the results for the coherent field obtained in an earlier study. It was found that the constituents of the rough surface such as the correlation length and wavenumber spectrum dominate the angular distribution of the scattered energy. These results indicate that it is crucial to employ a suitable topological model in the study of rough seabed scattering.  相似文献   

4.
Plane-wave reflection from a rough surface overlying a fluid half-space, with a sound speed distribution subject to a small and random perturbation, is considered. A theory based upon a boundary perturbation method in conjunction with a formulation derived from Green's function for the coherent field in the random medium have been applied to a typical oceanic environment to study their effects on the plane-wave reflection. By considering the coherent field itself, the plane-wave reflection may be obtained straightforwardly through a procedure consistent with the formalisms currently employed in rough surface scattering. The results show that both the rough surface and medium inhomogenieties may reduce the plane-wave reflection, however, the characteristics of the curves representing their effects are different, enabling us to identify the dominant scattering mechanism. The results for the coherent reflection due to the individual scattering mechanism are compatible with those found in the existing literature.  相似文献   

5.
一种分层海底反向散射模型   总被引:1,自引:1,他引:0  
In order to predict the bottom backscattering strength more accurately, the stratified structure of the seafloor is considered. The seafloor is viewed as an elastic half-space basement covered by a fluid sediment layer with finite thickness. On the basis of calculating acoustic field in the water, the sediment layer, and the basement, four kinds of scattering mechanisms are taken into account, including roughness scattering from the water-sediment interface, volume scattering from the sediment layer, roughness scattering from the sediment-basement interface,and volume scattering from the basement. Then a backscattering model for a stratified seafloor applying to low frequency(0.1–10 kHz) is established. The simulation results show that the roughness scattering from the sediment-basement interface and the volume scattering from the basement are more prominent at relative low frequency(below 1.0 kHz). While with the increase of the frequency, the contribution of them to total bottom scattering gradually becomes weak. And the results ultimately approach to the predictions of the high-frequency(10–100 kHz) bottom scattering model. When the sound speed and attenuation of the shear wave in the basement gradually decrease, the prediction of the model tends to that of the full fluid model, which validates the backscattering model for the stratified seafloor in another aspect.  相似文献   

6.
The spatial statistics of the acoustic field in shallow water are strongly affected by interfacial roughness and volume fluctuations in the water column or the seabed. These features scatter energy, reducing the coherence of the acoustic field. This paper introduces a consistent, mode-based modeling framework for ocean scattering. First, the rough surface scattering theory of Kuperman and Schmidt is reformulated in terms of normal modes, resulting in computation times which are reduced by several orders of magnitude. Next, a perturbation theory describing scattering from sound speed and density fluctuations in acoustic media is developed. The scattering theories are combined with KRAKEN, creating a unified normal mode code for wave theory modeling of shallow-water spatial statistics. The scattered field statistics are found to be a complicated function of scattering mechanism, scatterer statistics, and acoustic environment. Bottom properties, including elasticity, strongly influence the scattered field  相似文献   

7.
The characteristics of shallow-water reverberation are often controlled by scattering from the seabed. While scattering mechanisms are understood in general, the state-of-the-art falls far short of predicting the correct angular and frequency dependence of scattering in a given region. A series of acoustic and supporting geoacoustic measurements were conducted over a large area in the Straits of Sicily in order to study seabed scattering in a complex littoral environment. The hypothesis was that exploiting direct path reflection coefficient measurements, in conjunction with the scattering measurements, could help illuminate the underlying scattering mechanisms. The sediment at the seabed interface was found to be a fine silty clay with nearly uniform properties across the area. Notwithstanding this spatial homogeneity, 1-6-kHz reflection and scattering measurements showed significant spatial variability. The coupled reflection-scattering approach resolved this apparent discrepancy, revealing that the reflection and scattering processes are largely controlled by the sediment properties below, rather than at, the water sediment interface. Measurements at 3600 Hz show that site-to-site variability is in part controlled by the thickness of the silty-clay layer. Layers up to 10 m below the water sediment interface contribute to the scattering at 3600 Hz.  相似文献   

8.
A joint surface roughness/volumetric perturbation scattering theory is utilized to characterize the reverberation from a littoral ocean bottom. The result is a reflected field spectrum that consists of specular and off-specular components. The predicted scattering strength from the off-specular component is shown to be comprised of interface roughness scattering, sediment inhomogeneity volumetric scattering, and interface roughness/sediment inhomogeneity correlation scattering. The sediment inhomogeneity volumetric scattering is shown to contain two contributions that are due to fractional variations in sediment densities and sound velocities. Both contributions are shown to be affected by the interface effect by a round-trip transmission coefficient factor. These two fractional variations are shown to contribute differently to scattering strength but similarly to backscattering strength. Inversely predicted roughness spectra from various sets of backscattering strength data are shown to be consistent with a generally known roughness spectrum. Both inversely predicted roughness and volumetric scattering physical property spectra are found to be self-consistent. However, the use of only ocean bottom backscattering strength data is found to be insufficient to judge whether the roughness or the volumetric scattering dominates. Reverberation characterizations using bistatic scattering strength data and signal spread data are planned for future studies  相似文献   

9.
Acoustic plane-wave scattering from a rough surface overlying a fluid half-space with a sound-speed distribution subject to a small random variation is considered. Under the assumption that the surface roughness and medium randomness are statistically independent, the scattered field may be derived by first solving for the mean field in the medium, and then incorporating with boundary-perturbation method to obtain the total mean field and the power spectral density of the scattered field. The employed algorithm is compatible to the analysis available in the existing literature so that the formulations are conveniently integrated. The results for the power spectral density have shown that the effects of medium inhomogeneities on the rough surface scattering are limited in a spectral regime where the scattered components have shallow grazing angles. The distribution of the power spectral density over the space is primarily governed by the power spectrum and correlation lengths of the rough surface.  相似文献   

10.
Acoustic backscattering from a sandy seabed was measured at a frequency of 5.5 kHz at a wide range of grazing angles. The measurement system used was the University of Miami's sonar tower, consisting of an omni-directional broadband source and two 16-channel hydrophone receiver arrays. A volume scattering model, which combines a fluid model with reflection/transmission coefficients derived from the Biot theory, is used. This model allows energy penetration into the bottom, calculations of the volume scattering at all grazing angles, and the frequency dependence of the sound speed in the water-saturated sediment. In the model, rather than assume sound-speed correlation length in sedimentary volume, core data were used to assimilate a 3-D fluctuation spectrum of the density. The numerical results showed excellent agreement with the measurement at lower grazing angles. We concluded that the interface roughness scattering was dominant at lower grazing angles, while the volume scattering is dominant at higher grazing angles at the sandy site. The border of the dominance of the interface and volume scattering was the so-called critical angle at this frequency. The frequency dependence of sound speeds is also discussed.  相似文献   

11.
Acoustic wave fields in an ocean waveguide with a sediment layer having continuously varying density and sound speed overlying an elastic subbottom are considered in this analysis. The objective of this study is to investigate the effects of seabed acoustic properties, including the density and sound speed of the sediment layer and subbottom, on the characteristics of the wave fields. Examination of the reflection coefficient, wavenumber spectrum, and noise intensity of the sound field through numerical analysis has shown that the variation in the acoustic properties in the sediment layer is an important factor in determining the reflected or noise sound fields. In particular, the sediment thickness-to-wavelength ratio and the types of variation of acoustic properties inside the layer give rise to many characteristics that potentially allow for acoustic inversion of the seabed properties. With regard to the wave-field components in a shallow-water environment, the various types of waves existing in a seismo-acoustic waveguide have been illustrated. The results indicate that the effects of the sediment properties on the wavenumber spectrum are primarily on the continuous and evanescent regimes of the wave field. The noise intensity generated by distributive random monopoles at various depths, together with the effect of refractive sound-speed distribution in the water column, has been obtained and analyzed.  相似文献   

12.
The topography of the seabed is influenced by sediment transport due to wave motion, current disturbance, and biological activities. The bottom roughness generated by these processes can substantially alter acoustic wave penetration into and scattering from the bottom, and therefore, it is essential to make accurate measurements of the bottom roughness for such acoustic applications. Methods to make direct measurements of bottom roughness include stereo photography, laser line scanning, and sediment conductivity. Roughness can also be measured indirectly using high-frequency sound backscatter. For optically-based methods, the accuracy of these measurements is typically evaluated using the elevations, lengths, or diameters of simple surface features of known dimensions. However, for acoustic applications, the statistical characteristics of the surface, e.g., the roughness spectrum, are more meaningful. In this paper, we present a fabricated rough surface milled into a 40 $,times ,$60 cm $^{2}$ plastic block for use as a benchmark in the assessment of two in situ roughness measurement systems: a laser scanning system and a digital stereo photography system. The surface has a realistic roughness power spectrum that is derived from the bottom roughness measured during the 1999 Sediment Acoustics Experiment (SAX99) and was fabricated by a computer numerical controlled milling machine. By comparing the fabricated surface spectrum to the measured spectrum, a determination of the accuracy of the roughness measurement is evaluated, which is of direct relevance to acoustic applications.   相似文献   

13.
Surface-generalized ambient noise in a shallow ocean waveguide with a sediment layer possessing a specific class of density and sound speed distributions capable of describing a realistic seabed environment is considered in this analysis. This class of non-uniform sediment layer has the density and sound speed distributions varying with respect to depth as a generalized-exponential and an inverse-square function, respectively. The study invokes a formulation developed by Kuperman and Ingenito (Kuperman, W. A., Ingenito, F., 1980. Spatial correlation of surface-generated noise in a stratified ocean. J. Acoust. Soc. Am., 67, 1988-1996.) for surface noise generation, in conjunction with the analytical solutions for the Helmholtz equation corresponding to the sediment layer, to arrive at an analytical expression convenient for numerical implementation. The intensity and spatial correlation of the noise sound field are analyzed with respect to the variation of the system parameters, including frequency, sediment layer thickness, sound speed gradient, with emphasis on the effects of sediment properties on the ambient noise field. The results have demonstrated that the intensity of the noise field is relatively sensitive to the variation of the parameters, but the spatial correlation is affected to a less extent, suggesting that the energy distribution, rather than the spatial structure, of the noise field is more susceptible to the environmental variations.  相似文献   

14.
As part of the sediment acoustics experiment 1999 (SAX99), backscattering from a sand sediment was measured in the 20- to 300-kHz range for incident grazing angles from 10/spl deg/ to 40/spl deg/. Measured backscattering strengths are compared to three different scattering models: a fluid model that uses the mass density of the sediment in determining backscattering, a poroelastic model based on Biot theory and an "effective density" fluid model derived from Biot theory. These comparisons rely heavily on the extensive environmental characterization carried out during SAX99. This environmental characterization is most complete at spatial scales relevant to acoustic frequencies from 20 to 50 kHz. Model/data comparisons lead to the conclusions that rough surface scattering is the dominant scattering mechanism in the 20-50-kHz frequency range and that the Biot and effective density fluid models are more accurate than the fluid model in predicting the measured scattering strengths. For 50-150 kHz, rough surface scattering strengths predicted by the Biot and effective density fluid models agree well with the data for grazing angles below the critical angle of the sediment (about 30/spl deg/) but above the critical angle the trends of the models and the data differ. At 300 kHz, data/model comparisons indicate that the dominant scattering mechanism may no longer be rough surface scattering.  相似文献   

15.
声波在海底界面的反射和透射是海底散射、海底混响、海底目标探测的重要问题。利用Biot多孔介质声传播理论对声波在水-多孔海底界面上的反射和透射进行了分析,具体给出反射声波的反射系数,3种透射声波的透射系数以及声能透射系数随入射波入射角和频率(10~40 kHz)的变化关系,分析了各种透射波对透射声能的贡献。多孔海底介质参数分别采用Stoll和Chotiros给出的2组参数进行理论计算。  相似文献   

16.
A simple numerical technique is developed for generating pseudorandom realizations of three-dimensional (3-D) transient acoustic waves that are scattered from two-dimensional (2-D) patches of randomly rough surfaces. The rough surface height of a patch is represented numerically in the 2-D horizontal wavenumber plane by choosing a scheme for interpolation between pseudorandom complex coefficients. Using this approach, the realizations of the patches can be generated from experimentally measured roughness power spectra, and phase information is generated in the frequency domain that leads to time spreads in the time domain. The acoustic scattering is modeled here with first-order perturbation theory. The boundary conditions considered here are pressure-release, rigid, and fluid-fluid. Three different spatial windows are considered for defining the patches. In the time domain, the time spreads of the scattered waveforms agree with predictions. In the frequency domain, the phase is seen as a random walk. The solutions developed here can be used with normal mode propagation models or ray propagation models  相似文献   

17.
运用微扰法研究了平面波入射分层介质粗糙面的电磁波透射问题,采用改进的一维分形海面模型模拟实际的分层海面,推导出了平面波入射时的透射系数计算公式.通过数值计算得到了HH极化透射系数随散射角的变化曲线,讨论了中间介质介电常数和厚度、摩擦风速和入射波频率对透射系数的影响,得到改进的一维分形分层海面透射系数的基本特征、分区特征和随频率变化的特征,结果表明透射系数近似具有"量子化"特征.  相似文献   

18.
An analysis of the radar backscattering from the ocean surface covered by oil spill is presented using a microwave scattering model and Monte-Carlo simulation. In the analysis, a one-dimensional rough sea surface is numerically generated with an ocean waveheight spectrum for a given wind velocity. A two-layered medium is then generated by adding a thin oil layer on the simulated rough sea surface. The electric fields backscattered from the sea surface with two-layered medium are computed with the method of moments (MoM), and the backscattering coefficients are statistically obtained with N independent samples for each oil-spilled surface using the Monte-Carlo technique for various conditions of surface roughness, oil-layer thickness, frequency, polarization and incidence angle. The numerical simulation results are compared with theoretical models for clean sea surfaces and SAR images of an oil-spilled sea surface caused by the Hebei (Hebei province, China) Spirit oil tanker in 2007. Further, conditions for better oil spill extraction are sought by the numerical simulation on the effects of wind speed and oil-layer thickness at different incidence angles on the backscattering coefficients.  相似文献   

19.
An acoustic wave scattering model is formulated and solved for three homogeneous layers consisting of a thin solid sediment layer sandwiched by semi-infinite water and solid basalt media. The model is applied to two cases to analyze both the physical parameters affecting reflection loss and the effects of interface roughness scattering. It is shown that effects of attenuation in the sediment layer, especially of S-waves, combine with conversion and scattering processes of the basalt interface to constitute the dominant mechanism of reflection loss, especially in the small grazing angle directions. The scattering process is found not only to produce the well-known acoustic energy loss from specular to nonspecular directions, but also to alter the conversion efficiency between P and S waves with a resulting loss or gain  相似文献   

20.
Tests of models for high-frequency seafloor backscatter   总被引:3,自引:0,他引:3  
The interaction of high-frequency sound with the seafloor is inherently a stochastic process. Inversion techniques must, therefore employ good stochastic models for bottom acoustic scattering. An assortment of physical models for bottom backscattering strength is tested by comparison with scattering strength data obtained at 40 kHz at three shallow water sites spanning a range of sediment types from fine silt to coarse sand. These acoustic data are accompanied by sediment physical property data obtained by core sample analysis and in situ probes. In addition, stereo photography was used to measure the power spectrum of bottom relief on centimeter scales. These physical data provided the inputs needed to test the backscatter models, which treat scattering from both the rough sediment-water interface and the sediment volume. For the three sites considered here, the perturbation model for scattering from a slightly rough fluid seafloor performs well. Volume scattering is predicted to be weak except at a site having a layer of methane bubbles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号