首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the capillary stress tensor in wet granular materials   总被引:3,自引:0,他引:3  
This paper presents a micromechanical study of unsaturated granular media in the pendular regime, based on numerical experiments using the discrete element method, compared with a microstructural elastoplastic model. Water effects are taken into account by adding capillary menisci at contacts and their consequences in terms of force and water volume are studied. Simulations of triaxial compression tests are used to investigate both macro and micro‐effects of a partial saturation. The results provided by the two methods appear to be in good agreement, reproducing the major trends of a partially saturated granular assembly, such as the increase in the shear strength and the hardening with suction. Moreover, a capillary stress tensor is exhibited from capillary forces by using homogenization techniques. Both macroscopic and microscopic considerations emphasize an induced anisotropy of the capillary stress tensor in relation with the pore fluid distribution inside the material. Insofar as the tensorial nature of this fluid fabric implies shear effects on the solid phase associated with suction, a comparison has been made with the standard equivalent pore pressure assumption. It is shown that water effects induce microstructural phenomena that cannot be considered at the macro level, particularly when dealing with material history. Thus, the study points out that unsaturated soil stress definitions should include, besides the macroscopic stresses such as the total stress, the microscopic interparticle stresses such as the ones resulting from capillary forces, in order to interpret more precisely the implications of the pore fluid on the mechanical behaviour of granular materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Micromechanical aspects of the shear strength of wet granular soils   总被引:1,自引:0,他引:1  
This paper presents a micromechanical model for the analysis of wet granular soils at low saturation (below 30%). The discrete element method is employed to model the solid particles. The capillary water is assumed to be in a pendular state and thus exists in the form of liquid bridges at the particle‐to‐particle contacts. The resulting inter‐particle adhesion is accounted for using the toroidal approximation of the bridge. Hydraulic hysteresis is accounted for based on the possible mechanism of the formation and breakage of the liquid bridges during wetting and drying phases. Shear test computational simulations were conducted at different water contents under relatively low net normal stresses. The results of these simulations suggest that capillary‐induced attractive forces and hydraulic hysteresis play an important role in affecting the shear strength of the soil. These attractive forces produce a tensile stress that contributes to the apparent cohesion of the soil and increases its stiffness. During a drying phase, capillary‐induced tensile stresses, and hence shear strength, tend to be larger than those during a wetting phase. The proposed model appears to capture the macroscopic response of wet granular materials and revealed a number of salient micromechanical mechanisms and response patterns consistent with theoretical considerations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The paper presents a strainhardening constitutive model for unsaturated soil behaviour based on energy conjugated stress variables in the framework of superposed continua. The proposed constitutive law deals with hydro‐mechanical coupling phenomena. The main purpose is to develop within a consistent framework a model that can deal with possible mechanical instabilities occurring in partially saturated materials. The loss of capillary effects during wetting processes can, in fact, play a central role in unstable processes. Therefore, it will be shown that the bonding effects due to surface tensions can be described in a mathematical framework similar to that employed for bonded geomaterials to model weathering or diagenesis effects, either mechanically or chemically induced. The results of several simulations of common laboratory tests on partially saturated soil specimens are shown. The calculated behaviour appears to be in good qualitative agreement with that observed in the laboratory. In particular it is shown that volumetric collapse phenomena due to hydraulic debonding effects can be successfully described by the model. Finally, it will be highlighted the ability of the model to naturally capture the transition to a fully saturated condition and to deal with possible mechanical instabilities in the unsaturated regime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We investigate a polydisperse granular material in which the particle interactions are governed by a capillary force law. The cohesion force for a grain‐pair with unequal diameters is expressed as an explicit function of the inter‐particle distance and the volume of the liquid bridge. This analytical relation is validated by experiments on a reference material. Then, it is completed by a rupture criterion and cast in the form of a force law that accounts for solid contact, capillary force and rupture characteristics of a grain‐pair. Finally, in order to evaluate the influence of capillary cohesion on the macroscopic behaviour, radial and axial compression tests on cylindrical assemblies of wet particles are simulated using a 3D distinct element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The mechanical properties of cohesionless granular materials are evaluated from grain‐scale simulations. A three‐dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path‐dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress‐induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   

8.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Microstructural deformation mechanisms of unsaturated granular soils   总被引:1,自引:0,他引:1  
A discrete model for unsaturated granular soils has been developed. Three discrete entities have been defined: particles, water menisci and pores. Local interaction forces and water transfer mechanisms have been integrated into a model through the appropriate equilibrium and balance equations. The results of several numerical tests using this model have been described and discussed. Simulations include wetting and drying under load tests, the application of suction cycles and the effect of a deviatoric stress ratio on wetting‐induced collapse. The model reacts just as true granular soil samples behave in laboratory tests. The model provides a new insight into the internal mechanisms leading to large‐scale features of behaviour such as wetting‐induced collapse or the increase in soil strength provided by suction. The paper also stresses that matric suction changes acting on a granular structure are capable of explaining most of the macroscopic features of stress–strain behaviour. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.

The behavior of model granular materials (glass beads) wetted by a small quantity of liquid forming capillary bridges is studied by one-dimensional compression test combined with X-ray computed tomography (XRCT) observation. Special attention is paid to obtain very loose initial states (initial void ratio of about 2.30) stabilized by capillary cohesion. XRCT-based analyses involve spherical particle detection adapted to relatively low-resolution images, which enable heterogeneities to be visualized and microstructural information to be collected. This study on an ideal material provides an insight into the macroscopic compression behavior of wet granular materials based on the microstructural change, such as pore distance distribution, coordination number of contacts, coordination number of neighbors and number of contacts per grain.

  相似文献   

11.
Wet granular materials are three-dimensionally simulated by the discrete element method with water bridges incorporated between particles. The water bridges are simplified as toroidal shapes, and the matric suction is constantly maintained in the material. A comparison with experimental tests in the literature indicates that the toroidal shape approximation may be one of the best choices with high practicability and decent accuracy. Mechanical behaviours of wet granular materials are studied by triaxial tests. Effects of particle size distributions and void ratios are investigated systematically in this study. The hydraulic limit of the pendular state is also discussed. It gives the capillary cohesion function which is not only determined by the degree of saturation but also positively correlated to relative density and particle size polydispersity and inversely proportional to mean particle size. Furthermore, the capillary strengthening effect is also analysed microscopically in aid of the Stress–Force–Fabric relationship, mainly in fabric anisotropy, coordination number and stress transmission pattern, which revealed the micro-mechanisms of the additional effective stress induced by capillary effect.  相似文献   

12.
The paper offers an analytical determination of the hydraulic properties of an unsaturated soil with reference to its retention curve, which describes the relationship between the volumetric water content and capillarity through matric suction. The analysis combines a particulate approach focused on the physics at the pore scale, including microstructural aspects, with a probabilistic approach where the void space and grain size are considered as random variables. In the end, the soil water characteristic curve of an unsaturated granular medium along a drying path can be derived analytically based on the sole information of particle size distribution. The analysis hinges on the tessellation of a wet granular system into an assemblage of tetrahedral unit cells revealing a pore network upon which capillary physics are computed with respect to pore throat invasion by a non-wetting fluid with evolving pendular capillary bridges. The crux of the paper is to pass from particle size probability distribution to a matching void space distribution to eventually reveal key information such as void cell and solid volume statistics. Making reasonable statistically based assumptions to render calculations tractable, the water retention curve can be readily constructed. Model predictions compare quite favourably with experimental data available for actual soils, especially in the high saturation range. Having a sound scientific basis, the model can be made amenable to address a variety of soils with a wider range of particle sizes.  相似文献   

13.
薛龙  王睿  张建民 《岩土力学》2018,39(12):4681-4690
实际荷载条件下(如交通、地震荷载),粒状岩土材料常受到三维复杂应力路径作用。目前,多数粒状岩土材料的本构理论和模型都基于简单应力路径加载条件下的物理试验提出,在更加复杂应力路径下的适用性则需要进一步验证。但受机械控制的限制,物理试验中无法实现很多客观存在的三维复杂应力路径加载。为了能够再现并分析三维复杂应力路径下粒状介质的力学响应,提出了一种离散元数值试验方法,该方法采用球形数值试样,通过直接控制试样边界应力达到对3个主应力大小和方向的任意控制,从而可以实现诸多物理试验中无法实现的复杂应力路径。通过与目前常见的一些物理试验进行定性对比,论证了该数值试验方法通过高精度的加载控制和测量能够再现已有物理试验现象。在此基础上,进一步开展了应力主轴的三维旋转,分析了在这种实际存在却无法通过物理试验再现的加载条件下粒状介质的变形规律,初步显示了提出的数值试验方法在深入研究三维复杂应力路径下粒状介质力学响应方面所拥有的能力和优势。  相似文献   

14.
An experimental approach to the characterisation of the complex, multi-scale pore geometry in cement-stabilised soils is presented, in which the pore size distribution inclusively spans at least six orders of magnitude from ~3 nm up to >3 mm. These most likely result from the combined effects of granular inter-particle packing, clay/cement clothing and bridging effects, cement hydration and clay/cement pozzolanic reactions, and alteration of larger pore geometries as a result of solid mass mobilisation and transport following capillary wetting/drying regimes. Experimental data are presented and were obtained through a combination of X-ray computed tomography, mercury intrusion porosimetry and N2 physisorption supported by ‘wet mode’ environmental scanning electron microscopy. Data strongly suggest that macropore/capillary pore size distribution, mean pore size, sorptivity and transport coefficients are a function of particle size distribution (when compaction energy is constant). Mesopore size distribution, which dominates hygric sorption/desorption behaviour, occurs within the clay/cement matrix and also appears to be strongly influenced by the particle size distribution of the granular phase. All other factors being equal, manipulation of granular particle size distribution can be used to engineer the hygric (vapour) and capillary (liquid) potentials and also the fluid transport coefficients of these materials.  相似文献   

15.
严颖  季顺迎 《岩土力学》2009,30(Z1):225-230
自然条件下,颗粒介质大多以非规则单元形态存在。非规则几何形态对颗粒介质的宏观力学性能有很大影响。针对颗粒单元的不同几何形态,采用团颗粒单元对离散介质的直剪试验过程进行了离散元数值计算,详细地讨论了颗粒形态对离散介质剪切强度的影响。该非规则颗粒由不同形态、不同数目、镶嵌尺寸、组合方位和颗粒大小的球形颗粒进行随机构造,其在局部与整体坐标之间的转动、力矩和方位关系通过4元素方法进行确定,基本球体颗粒之间的作用力采用具有Mohr-Coulomb摩擦定侓的Hertz-Mindlin非线性接触模型,并考虑了非线性法向粘滞力的影响。通过构造7种具有相同的质量概率分布的不同形态的团颗粒,在不同法向应力下,对团颗粒的直剪试验进行了离散元模拟,分析了不同形态颗粒的剪切强度。通过对不同形态颗粒介质剪切强度的数值分析,进一步揭示了非规则颗粒间的咬合互锁效应,为分析非规则颗粒的宏观动力特性提供了依据。  相似文献   

16.
In this paper a micro‐polar continuum approach is proposed to model the essential properties of cohesionless granular materials like sand. The model takes into account the influence of particle rotations, the mean grain size, the void ratio, the stresses and couple stresses. The constitutive equations for the stresses and couple stresses are incrementally non‐linear and based on the concept of hypoplasticity. For plane strain problems the implementation of the model in a finite element program is described. Numerical studies of the evolution of micro‐polar effects within a granular strip under plane shearing are presented. It is shown that the location and evolution of shear localization is strongly influenced by the initial state and the micro‐polar boundary conditions. For large shearing the state quantities tend towards a stationary state for which a certain coupling between the norm of the stress deviator and the norm of the couple stress tensor can be derived. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Multi‐scale investigations aided by the discrete element method (DEM) play a vital role for current state‐of‐the‐art research on the elementary behaviour of granular materials. Similar to laboratory tests, there are three important aspects to be considered carefully, which are the proper stress/strain definition and measurement, the application of target loading paths and the designed experiment setup, to be addressed in the present paper. Considering the volume sensitive characteristics of granular materials, in the proposed technique, the deformation of the tested specimen is controlled and measured by deformation gradient tensor involving both the undeformed configuration and the current configuration. Definitions of Biot strain and Cauchy stress are adopted. The expressions of them in terms of contact forces and particle displacements, respectively, are derived. The boundary of the tested specimen consists of rigid massless planar units. It is suggested that the representative element uses a convex polyhedral (polygonal) shape to minimize possible boundary arching effects. General loading paths are described by directly specifying the changes in the stress/strain invariants or directions. Loading can be applied in the strain‐controlled mode by specifying the translations and rotations of the boundary units, or in the stress‐controlled mode by using a servo‐control mechanism, or in the combination of the two methods to realize mixed boundary conditions. Taking the simulation results as the natural consequences originated from a complex system, virtual experiments provide particle‐scale information database to conduct multi‐scale investigations for better understanding in granular material behaviours and possible development of the constitutive theories provided the qualitative similarity between the simulation results from virtual experiments and observations on real material behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The present study pertains to the development of a mechanical model for predicting the behavior of granular bed‐stone column‐reinforced soft ground. The granular layer that has been placed over the stone column‐reinforced soft soil has been idealized by the Pasternak shear layer. The saturated soft soil has been idealized by the Kelvin–Voigt model to represent its time‐dependent behavior and the stone columns are idealized by stiffer Winkler springs. The nonlinear behavior of the granular fill has been incorporated in this study by assuming a hyperbolic variation of shear stress with shear strain as in one reported literature. Similarly, for soft soil it has also been assumed that load‐settlement variation is hyperbolic in nature. The effect of consolidation of the soft soil due to inclusion of the stone columns has also been included in the model. Plane‐strain conditions are considered for the loading and foundation soil system. The numerical solutions are obtained by a finite difference scheme and the results are presented in a non‐dimensional form. Parametric studies for a uniformly loaded strip footing have been carried out to show the effects of various parameters on the total as well as differential settlement and stress concentration ratio. It has been observed that the presence of granular bed on the top of the stone columns helps to transfer stress from soil to stone columns and reduces maximum as well as differential settlement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A detailed multiscale analysis is presented of the swelling phenomenon in unsaturated clay-rich materials in the linear regime through homogenization. Herein, the structural complexity of the material is formulated as a three-scale, triple porosity medium within which microstructural information is transmitted across the various scales, leading ultimately to an enriched stress-deformation relation at the macroscopic scale. As a side note, such derived relationship leads to a tensorial stress partitioning that is reminiscent of a Terzaghi-like effective stress measure. Otherwise, a major result that stands out from previous works is the explicit expression of swelling stress and capillary stress in terms of micromechanical interactions at the very fine scale down to the clay platelet level, along with capillary stress emerging due to interactions between fluid phases at the different scales, including surface tension, pore size, and morphology. More importantly, the swelling stress is correlated with the disjoining forces due to electrochemical effects of charged ions on clay minerals and van der Waals forces at the nanoscale. The resulting analytical expressions also elucidate the role of the various physics in the deformational behavior of clayey material. Finally, the capability of the proposed formulation in capturing salient behaviors of unsaturated expansive clays is illustrated through some numerical examples.  相似文献   

20.
In this paper, the ability of a material rate‐independent system to evolve toward another mechanical state from an equilibrium configuration, with no change in the control parameters, is investigated. From a mechanical point of view, this means that the system can spontaneously develop kinetic energy with no external disturbance from an equilibrium state, which corresponds to a particular case of bifurcation. The existence of both conjugate incremental strain and stress such that the second‐order work vanishes is established as a necessary and sufficient condition for the appearance of this bifurcation phenomenon. It is proved that this fundamental result is independent of the constitutive relation of the rate‐independent material considered. Then the case of homogeneous loading paths is investigated, and, as an illustration, the subsequent results are applied to interpret the well‐known liquefaction observed under isochoric triaxial loading conditions with loose granular materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号