首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

2.
To understand the role that physical processes play on the biogeochemical cycles of estuaries, we conducted intense field studies of the turbidity maximum region within a partially mixed estuary (Winyah Bay, SC, USA) under contrasting conditions of river discharge, tides and wind. Water samples and hydrographic data were collected at different depths and locations along the main channel over several tidal cycles during several cruises to Winyah Bay. Tidal variations in current speed, salinity, total suspended solid concentrations were measured within each cruise and were consistent with estuarine circulation processes. Salinity and total suspended solid concentrations ranged from 0 to 32 and from 20 to over 500 mg L−1, respectively, with the highest salinity and total suspended solid values measured during periods of low river discharge. In fact, comparison of tidally averaged salinity and total suspended solid concentrations revealed marked differences among cruises that were negatively correlated to river discharge and SW wind speed. Moreover, significant contrasts in the chemical compositions of suspended particles were evident among periods of contrasting river discharge and wind regime. For example, the weight percent organic carbon content of suspended particles ranged from 1 to over 6% and displayed a positive correlation with river discharge. Similarly, both the molar carbon to nitrogen ratios (10 to 20 mol:mol) and stable carbon isotopic compositions (−25 to −29%) of the suspended organic matter varied significantly as a function of discharge and wind. Such trends indicate that in Winyah Bay low river discharge and steady SW winds promote resuspension of bed sediments from shallow regions of the estuary. These materials contain highly altered organic matter and their incorporation into the water column leads to the observed trends in suspended particle concentrations and compositions. Furthermore, these conditions result in net landward fluxes of salt, sediment and particulate organic matter throughout most of the water column, promoting efficient trapping of materials within the estuary. Our results illustrate the fundamental connection between physical forcings, such as discharge and wind, sediment transport processes and the cycling of biogeochemical materials in estuarine environments.  相似文献   

3.
The present study investigates the differences between nutrient fluxes and particulate organic matter within an artificial reef system (AR) deployed in August 2002 off Faro (Algarve, Southern Portugal) and in a non-reef area (NRA), and how fluxes and suspended material may be affected by the hydrodynamic regime. Surveys to collect sediment cores, suspended/settled particles and overlying water samples were carried out by divers, from March (2006) to October (2007) in AR and NRA. Sediment cores and settled particles were collected to determine grain size, organic and inorganic carbon, nitrogen and phosphorus content. Overlying water and pore water samples were analysed for ammonium, nitrite, nitrate, phosphate, silicate, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a. Results from the period studied showed that: (1) the benthic export of dissolved N, P and Si was 2–3 times higher at AR; (2) the particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP) in suspended/settled particles were about 1.5 times higher at AR; (3) at both AR and NRA, the benthic export of dissolved N, P and Si, during a calm weather period, was 2–4 times higher than during or immediately after a storm event; and (4) at both sites, particulate organic compounds (POC, PON and POP) increased about 20 times during a storm event. These findings suggest that both the nutrients transport from sediment to water column and the quantity/quality of suspended/settled particles were highly dependent on the existence of reef structures and on the hydrodynamic regime.  相似文献   

4.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

5.
Biological activity is known to influence sediment strength at bed–water interfaces. However, its precise effect on geomorphology and on bed composition is not known. This paper proposes a parameterization of sediment destabilizing and stabilizing organisms on three parameters that describe the erosion and mixing processes of the sediment bed, namely the critical bed shear stress, the erosion coefficient and the bioturbation coefficient. This parameterization is included in a 3D sand–mud morphodynamic model to form the sand–mud–bio model. The performance of the sand–mud–bio model is demonstrated by testing it on the Paulinapolder intertidal flat in the Western Scheldt estuary of The Netherlands. Model results show that biological influences on sediment strength result in significant morphological change and bed composition variations. Destabilizing organisms always cause a significant decrease in mud content in the bed and an increase of erosion. On the other hand, stabilizing organisms can, but do not necessarily, cause an increase of mud content and additional sedimentation.  相似文献   

6.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

7.
In order to understand the hydrodynamic parameters that control the fluvial sediment dynamics on an intertidal mudflat located in a sheltered zone in the upper part (fluvial part) of the macrotidal Seine estuary (France), a two-year field study of high-frequency field measurements was carried out. The bed-level evolution of the mudflat surface was measured from the semi-diurnal period to annual time scales using a high-resolution altimeter. The data showed that the sedimentary patterns on the mudflat were mainly controlled by river flows and tides. During high river flows in winter, sedimentation dominated; suspended particulate matter concentrations were higher, submersion was constant and at semi-diurnal scale, sedimentation duration was more important than erosion due to an asymmetrical tide. By contrast during low river flows in summer, erosion dominated mainly as a result of immersion/emersion of tidal flats during semi-diurnal cycle. From this annual sedimentation–erosion cycle we identify a temporary storage of 10–30% of the fine-grained (<63 μm) river-borne particles on mudflats in the upper section of the fluvial Seine estuary during high river flows.River-related sediment fluxes were estimated from the measurement of fine-grained sedimentation zones in the fluvial part of the estuary. The erosion/sedimentation processes were perennial, and the amounts of contributing sediments were directly related to the solid river load. Our results indicate that mudflats in the fluvial part of the Seine estuary play an important role in the downstream transfer of fine-grained suspended particulate matter (SPM) towards the turbidity maximum and the Rouen docks particularly during low river flows, when roughly 30–50% of the SPM originates from the eroded intertidal flats.  相似文献   

8.
Deep-sea sediment samples were collected in the Western Crozet Basin (Indian sector of the Southern Ocean) through Permanently Open Ocean Zone (POOZ), Polar Frontal Zone (PFZ) and Sub-Antarctic Zone (SAZ). Lipid class and fatty acid compositions were investigated to determine the sources and fate of organic matter in the first centimeter of sediment and, above this layer, in the fluff (when present) and particles in the overlying water. The total lipid content varied from 74 to 1033 μg l−1 in the overlying particles and fluffs, and from 24 to 97 μg g−1 dry mass (DM) in surficial sediments. Lipid composition was always dominated by phospholipids in the first centimeter of sediment and often in the overlying particles. The amount of phospholipids (labile compounds representative of fresh material) was compared to the amount of chlorophyll a (Chl a), another compound that is susceptible to rapid degradation. A strong N–S gradient was observed in the distribution of these two compounds, which was attributed to the contrasting hydrodynamic of the study area. The high sedimentation rate in POOZ resulted in better preservation of Chl a in this zone than in other zones of the Crozet Basin (PFZ and SAZ). Phospholipid fatty acids suggested the presence of viable as well as morphologically intact organisms, and these organisms consisted essentially of bacteria with some diatom cysts in the fluff of POOZ. These spores were able to grow in the culture, indicating that they were still viable. Despite the strong hydrodynamic variability, phospholipid fatty acids analysed from the deep-sea surficial sediments were never representative of plankton. This pointed to the extremely labile nature of the phospholipids originally present in planktonic material compared with Chl a, which was always found in overlying particles and surficial sediments.  相似文献   

9.
Simultaneous acquisition of water samples, radiance and irradiance measurements were carried out from 40 stations in the Mandovi–Zuari estuaries during February to May 2002. From the samples collected, inherent and apparent optical properties (IOP and AOP) such as absorption coefficient (a), upwelling diffuse attenuation coefficient (ku) and subsurface reflectance (R) were derived. Using these optical properties, radiative transfer at each water column is examined. On the basis of the radiative transfer outcome, band-ratio algorithms are derived for three optically active substances (OAS), viz, chlorophyll-a, suspended sediment and coloured dissolved organic matter (CDOM). The respective algorithms are 670/555, 490/670 and 412/670 nm for chlorophyll-a, suspended sediment and CDOM. These algorithms are applied to Ocean Colour Monitor (OCM), onboard Indian Remote Sensing Satellite (IRS)-Polar Satellite Launch Vehicle (P4), scenes (digital data), to synoptically analyze these OAS. The synoptic analysis of OAS revealed different hydrodynamic characteristics of the estuaries during non-monsoon seasons.  相似文献   

10.
The weekly mass flux of C and phytoplankton pigments at five depths in the main basin of Puget Sound, a deep (200 m) fjordlike estuary, was sampled for a year with moored sequentially-sampling sediment traps. Flux measurements were compared with weekly samples of suspended pigments in the euphotic zone and bi-monthly samples of total suspended matter and particulate C throughout the water column at the mooring site.Seasonal changes in the total mass flux at all depths were small; instead, physical (river runoff, bottom resuspension) and biological (phytoplankton blooms) events caused occasional sharp increases on a weekly scale. The dry weight concentration of pigments in the trap samples mirrored the concentration of pigments in the euphotic zone suspended matter, increasing from 0·01% in winter to a maximum of 0·65% in late summer. Bloom-induced changes in the pigment concentration were observed almost simultaneously in the euphotic zone and in the traps to a depth of 160 m, indicating a rapid vertical transfer of surface-originating particles by organic aggregates. In contrast to the strong seasonal signal in the pigment concentration, C concentration varied by only a factor of three during the year.The seasonal trend of C/pigment ratios in the C flux arises from at least two sources: (1) a balance between terrestrial sources of C during the high-runoff winter season and in-situ primary production in spring and summer, and (2) cycling of C through the zooplankton population. Budget calculations suggest that the loss of primary-produced C and pigment from the euphotic zone by settling is 5% regardless of season. On an annual basis, this C flux (16 g m−2) is sufficient to support previously measured values of benthic aerobic respiration at the mooring site. To account for other C sinks such as burial, predation and chemical oxidation, however, terrestrial C sources and alternate transport pathways, such as vertical advection and sediment movement down the steep basin walls, are necessary.  相似文献   

11.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   

12.
Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l−1 and 48 mg l−1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h−1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.  相似文献   

13.
长江分汊河口涨、落潮悬沙不对称特征及季节性差异   总被引:1,自引:1,他引:0  
入海河口由于径流的存在以及河口地貌形态的影响,存在涨、落潮水动力、悬沙以及盐度分布等不对称现象,同时这一不对称现象还存在显著的区域性和季节性差异。根据2013年7月和2014年1月洪、枯季长江口定点准同步水文泥沙调查结果,发现长江口分汊型河槽悬沙浓度在时间上存在洪枯季、大小潮不对称特征,在空间上存在东西向沿程分布、南北向横向分布以及垂向上表底层分布不对称特征。河势演变形成南、北支河口涨、落潮悬沙浓度不对称分布的整体格局;洪、枯季变化影响河口涨、落潮悬沙分布的再分配过程;大潮涨、落潮过程对悬沙分布不对称影响显著大于小潮;季节性风浪作用影响河口最大浑浊带涨、落潮悬沙不对称南北差异;底部高含沙浓度对口门段涨、落潮悬沙不对称性贡献显著。  相似文献   

14.
To address the relative importance of shrimp trawling on seabed resuspension and bottom characteristics in shallow estuaries, a series of disturbance and monitoring experiments were conducted at a bay bottom mud site (2.5 m depth) in Galveston Bay, Texas in July 1998 and May 1999. Based on pre- and post-trawl sediment profiles of 7Be; pore water dissolved oxygen and sulfide concentration; and bulk sediment properties, it was estimated that the trawl rig, including the net, trawl doors, and “tickler chain,” excavate the seabed to a maximum depth of approximately 1.5 cm, with most areas displaying considerably less disturbance. Water column profile data in the turbid plume left by the trawl in these underconsolidated muds (85–90% porosity; <0.25 kPa undrained shear strength) demonstrate that suspended sediment inventories of up to 85–90 mg/cm2 are produced immediately behind the trawl net; an order of magnitude higher than pre-trawl inventories and comparable to those observed during a 9–10 m/s wind event at the study site. Plume settling and dispersion caused suspended sediment inventories to return to pre-trawl values about 14 min after trawl passage in two separate experiments, indicating particles re-settle primarily as flocs before they can be widely dispersed by local currents. As a result of the passage of the trawl rig across the seabed, shear strength of the sediment surface showed no significant increase, suggesting that bed armoring is not taking place and the trawled areas will not show an increase in critical shear stress.  相似文献   

15.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   

16.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

17.
基于H J-1号小卫星CCD数据,开展近海水体悬浮物含量监测研究.采用邻近清洁水体和同日MODIS气溶胶产品的方法对CCD辐亮度数据进行较精准的大气校正;利用得到的水体遥感反射率,结合地面准同步实测悬浮物含量数据建立悬浮物反演模型,获得研究区悬浮物的空间分布.模型的相关系数R2为0.849,平均误差为33.0%,反演结果较为理想.结果表明,HJ-1号小卫星作为中国首个灾害监测小卫星星座,能够实现定量反演近海水体的悬浮物含量,对中国近海水体水质的监测和治理具有重要意义.  相似文献   

18.
Atmospheric and dissolved methane (CH4) and nitrous oxide (N2O) were measured in the unique coastal ecosystem of theBoddenwaters, including the western Oder estuary, (southern Baltic Sea) during five campaigns between 1994 and 1997. The CH4saturations, ranging from 105–15 500%, showed great spatial and temporal variability with maximum values in September and minimum values in December. The N2O saturations were in the range of 91–312% with a maximum in March. Enhanced concentrations of both gases were observed only in the western Oder estuary near the mouth of the Peene River. Thus, we conclude that the distributions of CH4and N2O in the investigatedBoddenwaters are, directly or indirectly, linked to the Peene River runoff and not to the Oder River. Our estimate of the annual CH4emissions from theBoddenwaters to the atmosphere indicates a significant contribution (c. 17%) to the overall CH4emissions from the Baltic Sea. In contrast, theBoddenwaters represent only a small source for atmospheric N2O.CH4production rates estimated from sediment slurry experiments revealed a significant spatial variability and indicated that methanogenic activity was related to acetate consumption in the surface sediment layer. Sedimentary CH4production might depend on different amounts of accumulation of organic material.  相似文献   

19.
The use of dissolved organic matter fluorescence as a tracer of river-sea mixing was examined in two South Carolina estuaries. Fluorescence declined linearly with seawater dilution in laboratory mixing studies, and also behaved conservatively in an estuary where a single river emptied into a bay. Fluorescence-salinity relationships were also studied in another estuary where a piedmont river (high suspended sediment, low fluorescence) and a coastal plains river (low sediment, high fluorescence) mixed with ocean water. The factor of 2 or greater difference in fluorescence between the two rivers allowed their relative contribution to the estuarine water mass to be distinguished. Petroleum hydrocarbons, measured in estuarine water at 0·7-1·8 μg l−1 concentrations, contributed negligibly to water fluorescence.  相似文献   

20.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号