首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations were used to identify and evaluate optimum electrode configurations and approaches for electrokinetic in situ chemical oxidation (EK‐ISCO) remediation of low‐permeability sediments. A newly developed groundwater and EK flow and reactive transport numerical model was used to conduct two‐dimensional scenario simulations of the coverage of an injected oxidant, permanganate, and the oxidation of a typical organic contaminant (tetrachloroethene, PCE). For linear configurations of vertical electrodes, the spacing of same‐polarity electrodes is recommended to be about one‐third to one‐quarter of the anode–cathode spacing. Greater coverage could also be achieved by locating additional oxidant injection wells at the divergence of the electric field in linear electrode configurations. Horizontal electrodes allowed greater contact between the injected permanganate and PCE and resulted in faster degradation of PCE compared to vertical electrodes. Pulsed oxidant injection, closer electrode spacing, and electric field reversal also resulted in faster EK‐ISCO remediation.  相似文献   

2.
Ex‐situ bioremediation of real‐field crude petroleum sludge was evaluated to elucidate the role of co‐culture (bioaugmentation) and external nutrients supplementation (biostimulation) under anaerobic microenvironment. Maximum removal of total petroleum hydrocarbons (TPH) was observed by integrating biostimulation with bioaugmentation (R5, 44.01%) followed by bioaugmentation alone (R4, 34.47%), co‐substrate supplemented operations [R6, 23.36%; R3, 16.5%; R2, 9.88%] and control (R1, 4.36%). Aromatics fraction showed higher degradation in all the conditions studied. Fate of six selected polycyclic aromatic hydrocarbons (PAHs) was evaluated during bioremediation. Among these, four ring PAHs compounds showed good degradation by integration of biostimulation with bioaugmentation (R5) while bioaugmentation alone (R4) documented good degradation of three ring PAHs. Lower ring PAHs compounds showed good degradation with the application of biostimulation (R6). Fluorescent in situ hybridization (FISH) detected the presence of known PAHs degrading microorganisms viz., Bacillus, Pseudomonas, Acido bacteria, Sulphur reducing bacteria Firmicutes, etc. Application of biostimulation and bioaugmentation strategies alone or in combinations documented noticeable influence on the degradation of petroleum sludge.  相似文献   

3.
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low‐permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X‐100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X‐100 (EK4) buffered with Na2HPO4/NaH2PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three‐dimensional box filled with a clayey soil spiked with 1,2,4‐trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH? produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10?4 cm2/v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.  相似文献   

4.
Electrokinetic (EK) process was performed to restore sulfate‐originated saline soil and to evaluate the effect of treatment duration. Sulfate and potassium were the major ionic salts in the saline soil used in this study. A constant voltage gradient of 1 V/cm was applied for 8, 12, and 16 days. After EK treatment, anions and cations were transported toward anode and cathode, respectively, by electromigration. Chloride was completely removed, and 85.6% of nitrate was removed after 8 days of treatment. The increase of treatment period from 8 to 12 days had a negligible effect on the enhancement in the rate of sulfate removal; however, over 70% was removed after16 days. At the end of experiment, the electrical conductivity (EC) of the soil, an indicator of soil salinity, decreased to 1.93 dS/m from an initial value of 5.3 dS/m, and the distribution of sulfate was similar to that of EC. The operation time of 16 days was sufficient to restore the sulfate‐originated saline soil using the EK process.  相似文献   

5.
In situ bioremediation is being considered to optimize an existing pump‐and‐treat remedy for treatment of explosives‐contaminated groundwater at the Umatilla Chemical Depot. Push‐pull tests were conducted using a phased approach to measure in situ hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and 2,4,6‐trinitrotoluene (TNT) degradation rates associated with various carbon substrates. Phase I included short‐duration transport tests conducted in each well to determine dilution rates and retardation factors for RDX and TNT. Phase II included aquifer “feedings” conducted by injecting 150 gallons of treated site groundwater amended with ethanol, corn syrup, lactose or emulsified oil (concentrations 10, 25 and 27 mM, respectively; 12% by volume for emulsified oil). Wells received up to 6 substrate “feedings” over the course of 3 months followed by monitoring dissolved oxygen, nitrate, Fe(II), and sulfate to gauge in situ redox conditions as indicators of anaerobic microbial activity. Phase III included push‐pull tests conducted by injecting 150 gallons of site groundwater amended with approximately 1000 µg/L RDX, 350 µg/L TNT, carbon substrate and a conservative tracer, followed by sampling over 8 d. Corn syrup resulted in the best RDX removal (82% on average) and the largest RDX degradation rate coefficient (1.4 ± 1.1 d?1). Emulsified oil resulted in the best TNT removal (99%) and largest TNT degradation rate coefficient (5.7 × 10?2 d?1). These results will be used to simulate full‐scale in situ bioremediation scenarios at Umatilla and will support a go/no‐go decision to initiate full‐scale bioremediation remedy optimization.  相似文献   

6.
This study combined bacterial incubation and hydrogeochemical methods to investigate denitrification in the surface water, top soil (0–20 cm), and shallow groundwater of the Ochi wetland in Japan. Surface water was rich in nitrate (40 mg/l) and denitrifying bacteria (700 per ml). Three functional zones in the wetland were identified in the top soil and shallow groundwater. In the upstream portion of the wetland (Zone I), the counts of denitrifying bacteria in top soil increased from 5200 to 14 970 per ml and nitrate decreased from 25·4 to 1·8 mg/l. Organic carbon concentrations decreased as sulfate increased from 4·0 to 9·6 mg/l in this zone. In the middle‐stream of the wetland (Zone II), all concentrations of major anions, iron, organic carbon, and total nitrogen content in top soil were relatively constant, but the counts of denitrifying bacteria increased up to 70 200 per ml. In the downstream portion of the wetland (Zone III), complete removal of nitrate resulted in sharp reduction of counts of denitrifying bacteria. Correspondingly, dissolved oxygen (DO), organic carbon, and total nitrogen increased in this zone. Counts of denitrifying bacteria were lower in shallow groundwater than in top soil; nitrate concentrations in shallow groundwater were also very low in this zone. DO and the oxidation/reduction potential data suggest that groundwater flows to the surface along an extended flow path, thus providing nitrate for the denitrifying community. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The phenomenon of acoustic waves inducing electric fields in porous media is called the seismoelectric effect. Earlier investigators proposed the usage of seismoelectric effect for well logging. Soil texture has a strong influence on the coupled wave fields during shallow surface explorations. In this article, we study the borehole pure shear‐horizontal wave and the coupling transverse‐electric field (acoustic–electrical coupling wave fields) in the partially saturated soil. Combined with related theories, we expand the formation parameters to partially saturated forms and discuss the influence of soil texture conditions on the seismoelectric wave fields. The results show that the elastic and electrical properties of porous media are sensitive to water saturation. The compositions of the acoustic and electric fields for different soil textures do not change, but the waveforms differ. We also use the secant integral method to simulate the interface‐converted electromagnetic waves. The results show that interface response strength is greatly influenced by soil texture. In addition, considering the sensitivity of the inducing electric field to fluid salinity, we also simulate the time‐domain waveforms of electric field for different pore fluid salinity levels. The results show that as the salinity increases, the electric field amplitude decreases monotonically. The above conclusions have certain significance for the application of borehole shear wave and its coupled electric fields for resource exploration, saturation assessment and groundwater pollution monitoring.  相似文献   

8.
Soil salinization due to saltwater incursion, is a major threat to microbial population and thus strongly alters biogeochemical processes in a freshwater riparian of coastal estuary region. An incubation experiment was conducted to investigate the effects of simulated saltwater treatments with different percentages of artificial seawater on biodegradation dynamics of herbicide bensulfuron‐methyl (BSM) and microbial ecophysiological parameters in a riparian soil in Chongming Island, China. The results showed that saltwater addition with 10% seawater significantly increased the biodegradation efficiency of BSM with the lowest residual concentration among all the treatments. However, BSM degradation was markedly decreased in the riparian soil with high levels of saltwater treatment. The half‐lives for 20% and 50% seawater treatments were prolonged by 4.9% and 21.1%, respectively, as compared to no saltwater treatment. Throughout the incubation period, 10% seawater treatment showed significantly stimulating effects on microbial parameters in the BSM‐spiked riparian soil. At the end of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, soil microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the BSM‐spiked riparian soil with 10% seawater were 64.2%, 48.9%, and 39.4% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities, relative to no saltwater treatment. Especially, FDA hydrolysis rate, microbial ATP, and BSR were decreased by 74.1%, 69.8%, and 63.4%, respectively, as compared to no saltwater treatment. Our data indicate that different levels of simulated saltwater incursion can exert variable effects on microbial ecophysiological parameters, and consequently resulted in the difference in biodegradation dynamics of herbicide in the herbicide‐spiked riparian soil.  相似文献   

9.
The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long‐term stewardship of re‐mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic‐rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital‐rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)‐reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink‐source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate‐reducing bacteria within Desulfobacteraceae to the iron‐reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U‐contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long‐term sourcing of the contaminants.  相似文献   

10.
A vertical soil column setup integrated with wetlands is developed to study the biodegradation and transport of toluene, a light non‐aqueous phase liquid (LNAPL), in the subsurface environment. LNAPL‐contaminated water is applied to infiltrate from the top of the soil column. The observed and simulated breakthrough curves show high equilibrium concentration at top ports rather than at lower ports, indicating effective toluene biodegradation with soil depth. The observed equilibrium concentration of toluene is higher in the case of unplanted wetland, asserting an accelerated biodegradation rate in the planted case. A difference in the relative concentration of toluene between input and output fluxes at 100 h is found as 13.34% and 30.86% for planted and unplanted wetland setups, respectively. Estimated biodegradation rates show that toluene degradation is 2.5 times faster in the planted wetland setup. In addition, the difference in the observed bacterial count and dissolved oxygen prove that toluene degraded aerobically at a faster rate in the planted setup. Simulations show that as time reached 80–100 h, there is no significant change in concentration profile, thereby confirming the equilibrium condition. The results of this study will be useful to frame plant‐assisted bioremediation techniques for LNAPL‐contaminated soil–water resources in the field.  相似文献   

11.
This study investigates total petroleum hydrocarbon (TPH) removal from residual clayey soil, after a washing procedure, using an electrokinetic process. Eight electrokinetic experiments were carried out to investigate the characteristics of TPH removal. When 0.1 M MgSO4 or 0.1 M NaOH was used as an electrolyte, the electric current rapidly increased within the first 100 or 200 h, respectively. A negatively charged soil surface resulted in a more negative zeta potential and greater electroosmotic flow toward the cathode. Therefore, the accumulated electroosmotic flow (EOF) when using 0.1 M NaOH as the anolyte‐purging solution was higher than when using 0.1 M MgSO4. Although the energy consumption for the two purging solutions was similar, the efficiencies of TPH removal when 0.1 M MgSO4 and 0.1 M NaOH with surfactant were used were 0 and 39%, respectively, because the electroosmotic flow rate increased with TPH removal efficiency. When 5% isopropyl alcohol (IPA) was used as a circulation solution, the electric current increased but the TPH removal was similar to that using water. In terms of energy consumption, the use of a surfactant‐enhanced electrokinetic process with NaOH as electrolyte was effective in removing TPHs from low‐permeability soil.  相似文献   

12.
Sulfate‐reduction data from various anaerobic reactor configurations, e. g., upflow anaerobic sludge blanket reactor (UASBR), completely stirred tank reactor (CSTR), and batch reactor (BR) with synthetic wastewaters, having glucose and acetate as the substrates and different levels of sulfate, were evaluated to determine the level of sulfate‐reducing activity by sulfate‐reducing bacteria coupled to organic matter removal. Anaerobic reactors were observed for the degree of competition between sulfate‐reducing sulfidogens and methane producing bacteria during the degradation of glucose and acetate. Low sulfate‐reducing activity was obtained with a maximum of 20% of organic matter degradation with glucose‐fed upflow anaerobic sludge bed reactors (UASBRs), while a minimum of 2% was observed with acetate‐fed batch reactors. The highest sulfate removal performance (72–89%) was obtained from glucose fed‐UASB reactors, with the best results observed with increasing COD/SO4 ratios. UASB reactors produced the highest level of sulfidogenic activity, with the highest sulfate removal and without a performance loss. Hence, this was shown to be the optimum reactor configuration. Dissolved sulfide produced as a result of sulfate reduction reached 325 mg/L and 390 mg/L in CST and UASB reactors, respectively, and these levels were tolerated. The sulfate removal rate was higher at lower COD/SO4 ratios, but the degree of sulfate removal improved with increasing COD/SO4 ratios.  相似文献   

13.
Cometabolism has been suggested as an attractive approach to enhance the degradation rates of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). However, the effects of these recalcitrant PAHs on the degradation characteristics of low-molecular-weight PAHs are largely unknown. This study was conducted to investigate the effects of pyrene (PYR) and fluoranthene (FLA) on the degradation characteristics of phenanthrene (PHE) in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments. Based on the kinetics and characteristics of PHE metabolites, it was proposed that the transformation of hydroxylated PHE into 1-hydroxy-2-naphthoic acid was a rate-limiting step in the degradation of PHE by strain PheB4. Compared to a single addition of PYR or FLA, the presence of a mixture of PYR and FLA decreased the degradation rate of PHE to a larger extent, which was likely because it could inhibit the production of 1-hydroxy-2-naphthoic acid more effectively.  相似文献   

14.
Sampling the collected suspension in a storage tank is a common procedure to obtain soil loss data. A calibration curve of the tank has to be used to obtain actual concentration values from those measured by sampling. However, literature suggests that using a tank calibration curve was not a common procedure in the past. For the clay soil of the Sparacia (Italy) experimental station, this investigation aimed to establish a link between the relative performances of the USLE‐M and USLE‐MM models, usable to predict plot soil loss at the event temporal scale, and soil loss measurement errors. Using all available soil loss data, lower soil loss prediction errors were obtained with the USLE‐MM (exponent of the erosivity term, b1 > 1) than the USLE‐M (b1 = 1). A systematic error of the soil loss data is unexpected for the Sparacia soil because the calibration curve does not depend on the water level in the tank. In any case, this type of error does not have any effect on the b1 exponent. Instead, this exponent decreases as the level of underestimation increases for increasing soil loss values. This type of error can occur at Sparacia if it is assumed that a soil loss measurement can be obtained by a bottle sampler dipped close to the bottom of the tank after mixing the suspension and assuming that the measured concentration coincides with the actual one. In this case, the risk is to obtain a lower b1 value than the actual one. In conclusion, additional investigations on the factors determining errors in soil loss data collected by a sampling procedure are advisable because these errors can have a noticeable effect on the calibrated empirical models for soil loss prediction.  相似文献   

15.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Bioremediation is intensively studied today as a treatment method for soil contaminated with chlorinated pesticides, chemicals counted among persistent organic pollutants. In the presented work, results of desorption kinetics study using consecutive Tenax TA solid phase extraction (SPE) were tested as predictors of 3‐wk anaerobic soil bioremediation effectiveness for chlorinated pesticides γ‐HCH, DDT, and methoxychlor. Field‐contaminated samples were used in these experiments, and conditions of bioremediation tests were based on previous research. Amounts of pesticides removed during bioremediation (43–98% of initial concentrations) were in most cases much larger (average ratio 1.37) than rapidly desorbing fractions estimated in SPE using two‐compartment model of desorption kinetics. The scatter of results was also considerable (standard deviation 0.45). However, there was a statistically significant correlation between amounts removed and rapidly desorbing fractions (R2 = 0.64), indicating a relationship between degradability and desorbability. Nonetheless, determination of rapidly desorbing fractions was considered rather a poor indicator of soil bioremediation efficiency for chlorinated pesticides. The total amounts of pesticides desorbed by Tenax in 72 h performed better in this respect (R2 = 0.73, fraction removed/desorbed = 1.10 ± 0.20, average ± standard deviation). Disappearance of DDT during bioremediation was accompanied by DDD formation but this was considerably lower than results expected from stoichiometry.  相似文献   

17.
The degradation and leaching of napropamide were compared between Beach Ridges Interspersed with Swales (BRIS) soil samples, and the same soil samples amended with 20 mg ha?1 of either chicken dung (CD) or palm oil mill effluent (POME). The effects of removing dissolved organic carbon (DOC) from the soil samples on napropamide degradation and leaching were also studied. The addition of CD and POME to BRIS soil increased the napropamide half‐life values to 69 and 49.5 days, respectively. Sterilization of the soil samples resulted in partial inhibition of napropamide degradation in all soil samples. The half‐lives of napropamide in BRIS soils receiving 0, 20, 100, and 200 mg kg?1 of DOC derived from CD were 43, 46.2, 53.4, and 63 days, respectively. The napropamide half‐lives in soil samples treated with 0, 20, 100, and 200 mg kg?1 of DOC derived from POME were 43, 49.2, 57.7, and 69 days, respectively. However, in the sterilized soil samples, there were no significant effects of adding DOC derived from either CD or POME on napropamide half‐lives. Incorporating either CD or POME decreased napropamide leaching and total amounts of napropamide remained in the soil columns after two pore volumes of water has been leached were higher in the amended than the non‐amended soil. The CD was more effective in decreasing napropamide leaching than the POME. There were no effects of DOC on napropamide leaching in all soil treatments.  相似文献   

18.
Perspectives, advances and environmental aspects concerning electrochemical ozone production applied to water purification are presented and discussed in relation to the conventional corona process (silent electric discharge). Ozone generated using a laboratory‐made electrochemical reactor was applied for the discoloration/degradation of dyes used in the Brazilian textile industry and for degradation of endocrine disruptors. A constant ozone load of 0.35 ± 0.02 g/h was used throughout. The study, concerning color removal from dye solutions, revealed that total discoloration is rapidly achieved. The degradation rate of the textile dyes evaluated by TOC is little affected by the dye composition and considerably influenced by the pH and ozonation time. Analysis of the COD/TOC‐ratio indicates that ozonation increases oxidation feasibility of the organic matter (dye by‐products) when compared to the original compounds. Ozonation of mixed aqueous solutions containing different endocrine disruptors revealed these compounds are totally degraded with a very high removal rate.  相似文献   

19.
The ability of Trametes versicolor and Pleurotus ostreatus to grow on agroindustrial wastes, such as orange peels, and to degrade model polycyclic aromatic hydrocarbons (PAHs) in solid‐state fermentation (SSF) was evaluated. Best results in laccase production were obtained with T. versicolor cultures (3000 U L?1), however, P. ostreatus (2700 U L?1) showed higher ability to degrade the tested PAHs phenanthrene (PHE) and pyrene (PYR). Moreover, orange peels can be used as biofertilizer and the oxidative ability of the spent fungus and substrate obtained in SSF can be used in the remediation of polluted soil. The results obtained confirm this hypothesis. Thus, the decontamination achieved in soils polluted with PYR was around 43% (after 30 days) by addition of spent fungus and substrate from SSF.  相似文献   

20.
High‐resolution soil and groundwater monitoring was performed to assess the long‐term impacts of bioremediation using bioaugmentation with a dechlorinating microbial consortium (and sodium lactate as the electron donor) in a well‐characterized trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL) source area. Monitoring was performed up to 3.7 years following active bioremediation using a high‐density monitoring network that included several discrete interval multi‐level sampling wells. Results showed that despite the absence of lactate, lactate fermentation transformation products, or hydrogen, biogeochemical conditions remained favorable for the reductive dechlorination of chlorinated ethenes. In locations where soil data showed that TCE DNAPL sources persisted, local contaminant rebound was observed in groundwater, whereas no rebound or continuous decreases in chlorinated ethenes were observed in locations where DNAPL sources were treated. While ethene levels measured 3.7 years after active treatment suggested relatively low (2 to 30%) dechlorination of the parent TCE and daughter products, carbon stable isotope analysis showed that the extent of complete dechlorination was much greater than indicated by ethene generation and that the estimated first‐order rate constant describing the complete dechlorination of TCE at 3.7 years following active bioremediation was approximately 3.6 y–1. Overall, results of this study suggest that biological processes may persist to treat TCE for years after cessation of active bioremediation, thereby serving as an important component of remedial treatment design and long‐term attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号