首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new constructed wetland was built to purify one polluted river in Taiwan, and this study was conducted to evaluate the treatment efficiency of the wetland. Due to the very limitation of available budget, several water quality items, which were stipulated by Taiwan’s Environmental Protection Administration for rivers, in the influent and effluent of wetland were analyzed and evaluated. These items included water temperature, pH, DO, BOD5, TSS, and NH4 +-N. The results showed that the average removal rates of total (unfiltered) BOD5, TSS and NH4 +-N were 36.9 %, 71.8 % and 47.1%, respectively. With the HRT more than 3.4 days, the wetland could treat the polluted river water effectively. Longer HRT in this wetland appeared no obvious improvement on the removal rate of TSS or NH4 +-N. However, BOD removal rate increased while the HRT (Hydraulic Retention Time) increased to about 5 days. In this wetland, the calculated mean first-order reaction rate constant (kT) for BOD5 was 0.15/day with a standard deviation of 0.13/day and for NH4 +-N was 0.24/ day with a standard deviation of 0.18/day. It is also concluded that there is a linear proportional relationship between BOD concentrations in the effluent of wetland and its influent mass loading rates, with the coefficient of determination (R2) of 0.6511. Similar result was seen for NH4 +-N as well, with the coefficient of determination (R2) of 0.5965. TSS removal rate was found to be linearly proportional to its influent mass loading rate, with the coefficient of determination (R2) of 0.4875.  相似文献   

2.
The objective of this study was to evaluate the treatment efficiency of a gravel contact oxidation treatment system which was newly constructed under the riverbed of Nan-men Stream located at the Shin Chu City of Taiwan. The influent and effluent water samples were taken periodically for the analyses of pH, temperature, dissolved oxygen, total suspended solids, five-day biological oxygen demand, NH4 +-N. The results showed that the average removal rates of five-day biological oxygen demand, total suspended solids and NH4 +-N were 33.6% (between ?6.7% and 82.1%), 56.3% (between ?83.0% and 93.4%) and 10.7% (between ?13.0% and 83.3%), respectively. The calculated mean first order reaction rate constant for five-day biological oxygen demand was 4.58/day with a standard deviation of 4.07/day and for NH4 +-N was 2.15/day with a standard deviation of 5.68/day. Therefore, it could be said that this gravel-contact-oxidation system could effectively remove biological oxygen demand, total suspended solids, and NH4 +-N in river water at a relatively short hydraulic retention time, although its pollutant treatment efficiency was not quite stable. However, to reach better or more stable treatment efficiency, aeration might sometimes be necessary to increase the dissolved oxygen in influent river water. And, longer hydraulic retention time of the system might also be required to increase NH4 +-N removal efficiency.  相似文献   

3.
A comparative experiment was conducted in two cross sections with sandy and sandy loam sediment textures along an agricultural drainage stream in eastern China to address the effects of sediment texture on in-stream nitrogen uptake efficiency. Using dimerous chambers for in situ incubations, NO3-N and NH4-N uptake metrics (i.e., areal uptake rate and uptake velocity) and associated hydrochemical variables in the enclosed sediment–water column system were measured for 8 days and two nights across April–July in 2011 and March–June in 2012. For the investigated sites, in-stream uptake accounted for 2–45 and 9–36 % of the initial NH4-N and NO3-N within the enclosed water column, respectively. Although similar daytime, diel and day-to-day (daytime) variation patterns of NO3-N or NH4-N uptake metrics were observed for the two sites, the sandy loam sediments had average net NO3-N and NH4-N uptake efficiency ~50 % higher and ~40 % lower than for the sandy sediments, respectively. As NO3-N was the dominant nitrogen form in the studied water columns (typical of agricultural drainage rivers), the sandy loam sediment site had an average of about 47 % higher net uptake efficiency for dissolved inorganic nitrogen (i.e., NO3-N + NH4-N). This study demonstrates that sediment texture has a considerable effect on spatial variation of nitrogen uptake along the river system. Changing sediment texture due to anthropogenic modifications on catchment land use and stream channels has the potential to change stream nitrogen cycling as well as altering nitrogen inputs and forms to downstream aquatic ecosystems.  相似文献   

4.
Human activities contribute different pollutants to receiving waters, often with significant variations in time and space. Therefore, integrating multiple parameters of water quality and their spatiotemporal variations is necessary to identify the pollution characteristics. Based on the water quality monitoring data with 12 parameters for 2 years at 22 sampling sites in the Cao-E River system, eastern China, the projection pursuit method was used to project all parameters and their temporal variations into a one-dimensional vector through two projections. Accordingly, we could easily assess the comprehensive water quality in different sampling sites and then classify their water pollution features. Factor analysis was then used to identify the pollution characteristics and potential sources. Results showed that all sampling sites for the river system could be classified into four groups: headwater sites (HS), agricultural nonpoint sources pollution sites (ANPS), point sources pollution sites (PSPS), and mixed sources pollution sites. Water quality in HS was good, containing only a few nutrients from the woodland runoff and soil erosion. For ANPS, the main pollutants were dissolved phosphorus, total P, and nitrate nitrogen (NO3 ?-N), mainly from farming land. For PSPS, ammonium nitrogen (NH4 +-N) and organic pollutants originated from industrial and municipal sewage. In HS and ANPS, NO3 ?-N was the main form of nitrogen, and a high ratio of NO3 ?-N/NH4 +-N was a remarkable characteristic, whereas NH4 +-N was the main form of nitrogen in PSPS. Except in HS, water quality in the other groups could not meet the local water quality control standard. Finally, suggestions were proposed for water pollution control for the different groups.  相似文献   

5.
High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater. To study the transformation mechanism of NH4+-N by nitrifying functional bacteria in tannery sludge contaminated soils, a series of contaminated soil culture experiments were conducted in this study. The contents of ammonium nitrogen (as NH4+-N), nitrite nitrogen (as NO2?-N) and nitrate nitrogen (as NO3?-N) were analyzed during the culture period under different conditions of pollution load, soil particle and redox environment. Sigmodial equation was used to interpret the change of NO3?-N with time in contaminated soils. The abundance variations of nitrifying functional genes (amoA and nxrA) were also detected using the real-time quantitative fluorescence PCR method. The results show that the nitrification of NH4+-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load, finer particle size and more oxidizing environment. The sigmodial equation well fitted the dynamic accumulation curve of the NO3?-N content in the tannery sludge contaminated soils. The Cr(III) content increased with increasing pollution load, which inhibited the reproduction and activity of nitrifying bacteria in the soils, especially in coarse-grained soil. The accumulation of NO2?-N contents became more obvious with the increase of pollution load in the fine sand, and only 41.5% of the NH4+-N was transformed to NO3?-N. The redox environment was the main factor affecting nitrification process in the soil. Compared to the aerobic soil environment, the transformation of NH4+-N was significantly inhibited under anaerobic incubation condition, and the NO3?-N contents decreased by 37.2%, 61.9% and 91.9% under low, medium and high pollution loads, respectively. Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand. Moreover, the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment. The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.  相似文献   

6.
Accurate prediction of the chemical constituents in major river systems is a necessary task for water quality management, aquatic life well-being and the overall healthcare planning of river systems. In this study, the capability of a newly proposed hybrid forecasting model based on the firefly algorithm (FFA) as a metaheuristic optimizer, integrated with the multilayer perceptron (MLP-FFA), is investigated for the prediction of monthly water quality in Langat River basin, Malaysia. The predictive ability of the MLP-FFA model is assessed against the MLP-based model. To validate the proposed MLP-FFA model, monthly water quality data over a 10-year duration (2001–2010) for two different hydrological stations (1L04 and 1L05) provided by the Irrigation and Drainage Ministry of Malaysia are used to predict the biochemical oxygen demand (BOD) and dissolved oxygen (DO). The input variables are the chemical oxygen demand (COD), total phosphate (PO4), total solids, potassium (K), sodium (Na), chloride (Cl), electrical conductivity (EC), pH and ammonia nitrogen (NH4-N). The proposed hybrid model is then evaluated in accordance with statistical metrics such as the correlation coefficient (r), root-mean-square error, % root-mean-square error and Willmott’s index of agreement. Analysis of the results shows that MLP-FFA outperforms the equivalent MLP model. Also, in this research, the uncertainty of a MLP neural network model is analyzed in relation to the predictive ability of the MLP model. To assess the uncertainties within the MLP model, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPU) and the band width of 95 percent confidence intervals (d-factors) are selected. The effect of input variables on BOD and DO prediction is also investigated through sensitivity analysis. The obtained values bracketed by 95PPU show about 77.7%, 72.2% of data for BOD and 72.2%, 91.6% of data for DO related to the 1L04 and 1L05 stations, respectively. The d-factors have a value of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to the 1L04 and 1L05 stations, respectively. Based on the values in both stations for the 95PPU and d-factor, it is concluded that the neural network model has an acceptably low degree of uncertainty applied for BOD and DO simulations. The findings of this study can have important implications for error assessment in artificial intelligence-based predictive models applied for water resources management and the assessment of the overall health in major river systems.  相似文献   

7.
The investigation of the impact of different forms of nitrogen fertilizer (NO3-N and NH4-N) on microbial parameters, enzyme activities and phytotoxicity in a petroleum-contaminated soil was evaluated by an incubation study. The tested enzymes, microbial activity and seed germination index showed different patterns in response to both petroleum and nitrogen fertilizer addition and time of incubation. The results apparently showed that the contamination of soil with petroleum has a negative effect on soil ecosystem. Nitrogen fertilizer could improve inhibition of petroleum hydrocarbons in soil. Nevertheless, nitrogen fertilizer had no significant effect on urease activity in the petroleum-contaminated soil. As compared to NO3-N, the addition of NH4-N to the soil resulted in a greater impact on soil performance as attested by the recovery of the soil germination capability and higher values of the respiration. The application of nitrogen fertilizer may be suggested as a good strategy for restoring soils in regions affected by the same problem.  相似文献   

8.
Excessive growth of biomass and retention of solids associated with air bubbles lead to bed clogging, which affects the biofilters?? performance. Two experiments were carried out in a submerged biofilter at the flow velocity of 0.5?m?h?1, for an organic loading rate of 51?g C m?3?h?1 and a nitrogen loading rate of 13?g NH4-N?m?3?h?1, one with the biofilter not aerated, the other with the biofilter partially aerated. The results showed that the higher head losses occurred in the upper section of the biofilter, where there was a greater biomass development and a higher removal of organic carbon, ammonia and solids, with the maximum allowed head loss being reached in 16 and 8?days. In any case, the steady-state conditions were achieved after 2?days and were interrupted on the tenth day of experiment E1 and on the fifth day of experiment E2. This allowed defining different operating cycles that enabled an average organic removal rate of 12.7?g C m?3?h?1 (27?%) and an average ammonia removal rate of 1.1?g NH4-N?m?3?h?1 (9?%) without aeration, and of 35.8?g C m?3?h?1 (76?%) and 6.3?g NH4-N?m?3?h?1 (51?%) with aeration. Regardless of the aeration conditions, more than 90?% of TOC and NH4-N removal occurred in the upper section. After the backwashing cycle, the biofilter returned to steady-state conditions in 6?h (without aeration) and 7?h (with aeration).  相似文献   

9.
沱江流域沉积物中氮赋存状态及其垂向分布特征   总被引:3,自引:1,他引:2  
2004年2月发生在沱江的特大水污染事故给沱江流域的生态环境造成了严重的危害,近年来受工农业和沿岸居民生活的影响,沱江的生态环境依然遭受着一定程度的污染,但对沱江流域氮的地球化学研究甚少。沉积物是水环境中污染元素的重要蓄积库或释放源,为揭示沉积物中氮赋存状态迁移转化特征,并评估该地区生态环境修复状况,本文参照Mackin应用的沉积物中吸附态氨氮提取方法和Smart建立的沉积物中总氮提取方法,采用分光光度法针对沱江流域金堂地区冬季沉积物,开展了河流沉积物中总氮(TN)、可交换态氨氮(AN)、有机氮(ON)赋存状态分析,并对比了十年前后该地沉积物中氮赋存状态的变化情况。实验结果表明:TN含量为518.913~4386.899 mg/kg,ON含量为101.531~3793.683 mg/kg。在-3 cm以上,TN和ON含量较高,且ON是TN的主要组成部分;随着深度增加,两者含量迅速减少,AN含量略有降低。与十年前该地区沉积物中氮的相关数据对比,TN含量增加,其中AN含量增加明显;在-3 cm以上,ON、TN在表层沉积物中增加明显。研究认为:沱江流域沉积物中的氮已经作为内源氮释放至间隙水甚至上覆水中,同时存在外源污染,致使沉积物表层有机氮以及总氮含量升高明显。  相似文献   

10.
该文以河南省贾鲁河中牟段为研究区,探究贾鲁河与河岸带浅层地下水的补排关系以及河水对浅层地下水的影响。通 过野外地质调查、水文地质试验、水位监测及水质检测,分析河岸带地表水与地下水的补排关系及污染特征。结果表明,受 中牟县抽取地下水的影响,该河段周围浅层地下水位低于河水位,河流补给地下水,平均单宽补给量为2.04 m2·d-1;河水中 NH3和COD污染较为严重,地下水中“三氮”均超标,其中NO2和NH3污染严重;河水NH3-N浓度远高于地下水,接受河 流补给的地下水NH3污染严重;因硝化作用,远离河流地下水NH3-N浓度逐渐降低,而NO3-N浓度逐渐升高。  相似文献   

11.
There are many reports of NO3 ? violating safety standards in the neighboring areas of concentrated animal feeding operations (CAFOs), which have become the bottleneck of the CAFOs development. The high concentration of ammonium nitrogen (NH4 +-N), which transforms into nitrate nitrogen (NO3 ?-N) through nitrification, and then leaches into the groundwater, is a potential threat to the environment. Adsorption and desorption characteristics of ammonium can reduce the amount of NH4 +-N in soils, which effectively prevents or slows down the nitrate leaching. Researches on the adsorption and desorption of ammonium mainly focus on the simple NH4 + solution. Researches on the adsorption and desorption from hogpen wastewater are few, which is a complex system coexisting with many ions. In this paper, ammonium was selected as the object of pollutant, a batch of equilibration experiments was conducted to evaluate the adsorption–desorption and its kinetics in eight loams, typically found in Northern China, irrigated with original wastewater (OW) and reclaimed wastewater (RW) from intensive hogpen and a simple one consisting of clean water (CW). This study showed that the Freundlich and Langmuir model described the ammonium adsorption properties very well in multi-ion coexistensive system of hogpen wastewater; the ammonium adsorbed amount in the corresponding matrices followed by OW < RW < CW tendency, although the adsorption model parameters had great diversity. The adsorbed amount increased as the adsorption time went on and then approached to a stable state. CW had the shortest reaction time to reach equilibrium, whereas OW had the longest. The normal adsorption kinetics equation could not depict the adsorption behavior of loams but characterized by the ExpAssoc equation well. The study could provide references for the wastewater treatment and recycling, and rural water pollution controlling.  相似文献   

12.
漓江桂林市区段三氮分布特征及影响因素分析   总被引:2,自引:0,他引:2  
文章为确定漓江桂林市区段三氮含量的变化趋势及其影响因素,分丰水期和枯水期在漓江干流及其支流上选择7个断面分别进行了取样,通过现场水化学指标和室内化验,对研究区三氮含量的时空分布特征和影响因素进行了探讨。分析结果表明:研究区漓江干流上C(NH3-N)和C(NO3--N)的最高值分别为0.248 3mg/L和2.251 7 mg/L,满足地表水环境质量Ⅱ类水标准,但漓江在经过研究区后三氮含量呈升高趋势;三氮含量的季节分布特征为NH3-N和NO3--N含量枯水期明显高于丰水期,而NO2--N含量枯水期略低于丰水期,丰枯季节水温的变化会影响总无机氮(TIN)中各种形态氮含量的比例,使得C(NH3-N)/ C(TIN)由丰水期的4.83%提高到枯水期的6.69%;流经农村生活区和农业地区的桃花江和小东江等支流是区内NH3-N的主要污染源,降雨后NH3-N的含量会明显升高。因此,加强区内漓江支流的综合治理、开展降雨条件下饮用水水源地取水口NH3-N含量的实时监测非常必要。   相似文献   

13.
The influences of suspended particles (SPs) on NH4 + adsorption and nitritation occurring in the water system of the Three Gorges Reservoir (TGR) were evaluated in this study. The results indicated that the adsorption of NH4 + was significantly affected by the SPs concentration under the conditions typically present in the TGR. The amount of ammonia adsorbed per unit weight of suspended particles was inverse proportional to the concentration of suspended particles. However, the influences of the particle size and the organic matter concentration existing in SPs were insignificant under the experimental conditions. The effects of suspended particles on nitritation were determined by the use of ammonia-oxidizing bacteria (AOB) strain SW16, identified as Nitrosomonas nitrosa, which was isolated from sediment samples of the TGR. Suspended particle concentration in water–sediment solution played an important role in the nitritation process. The rate of nitritation enhanced with the increase of the suspended particle concentration. It was found that the critical factor controlling ammonia oxidizing rate was the AOB biomass resulting from the AOB growth rate. Moreover, results demonstrated that both particle size and organic matter content showed little effect on the nitritation process under the experimental conditions.  相似文献   

14.
Induced bank infiltration (BI) is commonly implemented in other countries, but remains new and unexplored in Malaysia. Increasing river pollution could affect drinking water resources. Given the threat of pollution to raw water sources, applying induced BI to sustain water management is essential. This paper presents a case study of the BI method, which evaluates the effects of groundwater pumping and BI operation on the installation of wells as well as determines the effect of pumping rate on flow paths, travel time, the size of the pumping and capture zone delineation, and groundwater mixing in a pumping well in Jenderam Hilir, Malaysia. The proposed method performs infiltration safely and achieves the ideal pumping rate. Numerical modeling packages, MODFLOW and MODPATH (particle tracking) were used. Results indicate that the migration of river water into the aquifer is generally slow and depends on the pumping rate and distance from well to the river. Most water arrives at the well by the end of a pumping period of 1–5 days at 3,072 m3/day for test wells DW1 and DW2, and during simultaneous pumping for DW2 and PW1 for a well located 36 and 18 m, respectively, from the river. During the 9.7-day pumping period, 33 % of the water pumped from the DW1 well was river water, and 38 % from DW2 throughout 4.6 days was river water. The models provide necessary information for water operators in the design and construction of pumping and sampling schedules of BI practices.  相似文献   

15.
The purifying tank containing Pontederia cordata was used to treat heavily polluted river water. The relationship between the diurnal variation of plant physiology and water quality was investigated. The study took place from 0800 to 1800?hours and in that period the physiological parameters of the plant and the water quality were analysed. Results indicated that the activity of peroxidase and catalase, the content of soluble protein and the rate of photosynthesis and transpiration were negatively correlated to the concentration of nitrogen and phosphorus in the river water, respectively. Higher sunlight intensity increased the activity of peroxidase and catalase, the content of soluble protein, rate of photosynthesis and transpiration. Sunlight also decreased the concentration of nitrogen and phosphorus, the cations (Al3+, Fe2+ and Ca2+), the anions (Cl?, NO3 ? and SO4 2?) and the oxidation?Creduction potential and electrical conductivity of the river water. During the treatment from 0800 to 1800?hours, soluble protein content, photosynthesis rate of the plant and dissolved oxygen concentration of the river water showed a bimodal distribution, with peaks at 1200 and 1400?hours and a decrease at 1300?hours due to decrease in photosynthesis at midday. Peroxidase and catalase activity, soluble protein content, photosynthesis and transpiration rate were highest between 1000 and 1400?hours, while nitrogen and phosphorus concentration of the polluted water decreased significantly during this time. The correlation between plant physiology and water quality provided valuable data on the role of this plant in the ecological restoration of polluted water.  相似文献   

16.
Ammonia nitrogen compounds in the wastewaters and effluents have harmful effects on water resources. Ion exchange with zeolites is a separation process for ammonia removal from effluents. The objective of this research was to study the efficiency of an ammonia removal and the factor affecting to this process. The Clinoptilolite was obtained from Semnan mines at the north part of Iran. The samples were grounded and sieved based on the U.S. standard mesh number 20, 30, 40 and conditioned by ammonia sulfate and sodium chloride solutions. The characteristics of samples for ammonia removal and the selectivity sequence for adsorbing interfering cations were then determined. Results shown that the average ion exchange capacity of zeolite in batch and continuous systems were 6.65–16 and 16.31–19.5 mg NH4 + /g zeolite weight, respectively. In study on the zeolite for selective cations showed the ranking of K+, NH4 +, Na+, Ca2+ and Mg2+ respectively. Results indicated that high level of regeneration (95–98%) might be achieved with NaCl solution. Based on the results, Clinoptilolite may be effective applied in wastewater treatment, both from technical and economical aspects.  相似文献   

17.
This paper evaluates the effects of Torul dam on the stream Harşit water quality in terms of 13 physico-chemical parameters in the Gümüşhane Province, Eastern Black Sea Basin, Turkey. For this purpose, a study was fortnightly conducted during the four seasons between March 2009 and February 2010. In two monitoring stations selected in the upstream and downstream of the Torul dam, T, pH, DO and EC were determined in situ, and collected water samples were analyzed for TH, COD, NH4 +-N, NO2 -N, NO3 -N, TN, TKN, PO4 3−-P and MBAS. According to the Turkish Water Pollution Control Regulation (TWPCR), the stream Harşit was classified, and the obtained results were evaluated for the values proposed by Turkish Standard (TS) 266 and World Health Organization (WHO) guidelines. The results showed that the stream Harşit has high-quality water in terms of, T, pH, DO, COD, NH4 +-N and NO3 -N, but slightly polluted water in terms of NO2 -N, TKN and PO4 3−-P, and polluted for MBAS. It was concluded that Torul dam has a positive effect on the stream water quality in terms of decrease in the annual average concentration values. The percent decreases for TH, COD, NH4 +-N, NO2 -N, NO3 -N, TN, TKN, PO4 3−-P and MBAS were 17.1, 20.3, 56.2, 62.6, 11.7, 11.9, 11.4, 17.8 and 71.4, respectively. The reason for these decreases is probably due to the Torul dam reservoir where the water has a hydraulic residence time and the exposure to chemicals by aquatic organisms or populations that ingest the water. Also, statistical analysis shows that there are significant correlations among the studied parameters.  相似文献   

18.
Freshwater carbonates (tufas) develop today from the Arctic to the tropics, many being localized about springs and upper water courses. Some Quaternary tufas, especially in the Mediterranean region, extend over tens of square kilometres and exceed 30 m in thickness. Radiometric dating of Holocene deposits shows that many have accumulated at an average rate of 1 mm year?1. However, local precipitation may be much faster and some Holocene deposits may even have outpaced their tropical marine carbonate counterparts. Recently, the study of active sites has attempted to quantify the precipitation mechanisms which lead to tufa deposition. However, field observation and sampling procedures suffer from the inherent disadvantages of uncontrolled fluctuations in environmental conditions during the study programme. These disadvantages compromise any interpretations, particularly where controls on spar versus micrite precipitation are concerned. Many of these problems have been overcome in the current study by the construction and operation of laboratory mesocosm flumes which simulate the natural conditions (e.g. pH, flow rate, ambient temperature and daylight) in which freshwater carbonate (tufa) is deposited. Three mesocosms were supplied with natural river water from tufa precipitating streams and two mesocosms were supplied with UV‐treated (sterile) river water from the same source. One of the untreated flume mesocosms was linked with a calcium reactor, which replaced calcium ions removed during the precipitation process in order to maintain tufa growth over extended experimental runs. Low‐magnesium calcite precipitates (both rhombic sparite grown from long‐crystallite dendrites and short‐crystallite dendrite triad precursors) and micrite peloids (grown from spherulitic precursors) were precipitated in intimate association with biofilm (extracellular polymeric substances) within the four mesocosms supplied with natural river water. Virtually, no tufa‐like precipitate was obtained from the flumes supplied with UV‐treated river water. A second extended run flume experiment was also carried out for comparison purposes using a calcium hydroxide solution in deionized water. Collectively, these experiments provide convincing evidence confirming that the presence of a microbial biofilm strongly influences the precipitation of carbonates in riverine freshwater settings. In particular, experimental results show that micro‐peloidal micrite and short‐crystallite calcite dendrites are only produced in the presence of microbial extracellular polymeric substances.  相似文献   

19.
A preliminary assessment of the Wujiangdu Reservoir examined nutrient distribution and transport. Water samples were collected in the summer (July) of 2004, during the high-flow season. Inorganic nutrients (N, P, Si) and chlorophyll a (chl a) concentrations of the Wujiangdu Reservoir and its inflow rivers were analyzed. Other water parameters (dissolved oxygen, pH, temperature, and electrical conductivity) were measured as well. The results show gradually decreasing concentrations of NO3 ?-N and dissolved silicate in the surface water moving downstream to the dam of the Wujiangdu Reservoir. Additionally, soluble reactive phosphorus concentrations measured very low, with most falling below the sensitivity threshold of the method used in surface waters. Particulate phosphorus and NO3 ?-N were the predominant species of phosphorus and nitrogen in the reservoir, respectively. The concentration of nutrients in the Yeji River was the largest of all inflow rivers. The maximum concentration of chl a was found near the dam. These results reflect upstream conditions similar to that of a river, and reservoir conditions near the dam similar to that of a natural lake system.  相似文献   

20.
邕江南宁段水质现状及防治对策探讨   总被引:3,自引:0,他引:3  
根据影响南宁地区最大的河流——邕江近年污染物排放状况和3个水质控制断面的氨氮、生化需氧量、高锰酸盐指数和石油类等监测资料进行初步分析,本文主要从水质现状、主要污染因子和污染原因考察了邕江的水环境状况。结果显示,邕江水质总体上属于II~III类水质,但部分断面有恶化趋势,主要是溶解氧和氨氮超标;主要污染物为石油类、氨氮、高锰酸盐指数和五日生化需氧量,这表明邕江的污染类型属于典型的有机型污染。同时,也指出了邕江水质污染特征和主要存在的问题,并根据南宁市水污染的成因和水污染因素的分析,提出了保护和改善邕江水质的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号