首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present MHYDAS‐Erosion, a dynamic and distributed single‐storm water erosion model developed as a module of the existing hydrological MHYDAS model. As with many catchment erosion models, MHYDAS‐Erosion is able to simulate sediment transport, erosion and deposition by rill and interrill processes. Its originality stems from its capacity to integrate the impact of land management practices (LMP) as key elements controlling the sedimentological connectivity in agricultural catchments. To this end, the water‐sediment pathways are first determined by a specific process‐oriented procedure defined and controlled by the user, which makes the integration of LMP easier. The LMP dynamic behaviours are then integrated into the model as a time‐dependent function of hydrological variables and LMP characteristics. The first version of the model was implemented for vegetative filters and tested using water and sediment discharge measurements at three nested scales of a densely instrumented catchment (Roujan, OMERE Observatory, southern France). The results of discharge and soil loss for simulated rainfall events have been found to acceptably compare with available data. The average R2 values for water and sediment discharge are 0·82 and 0·83, respectively. The sensitivity of the model to changes in the proportion of LMP was assessed for a single rain event by considering three scenarios of the Roujan catchment management with vegetative filters: 0% (Scenario 1), 18% (Scenario 2, real case) and 100% (Scenario 3). Compared to Scenario 2 (real case), soil losses decreased for Scenario 3 by 65% on the agricultural plot scale, 62% on the sub‐catchment scale and 45% at the outlet of the catchment and increased for Scenario 1 by 0% on the plot scale, 26% on the sub‐catchment scale and 18% at the outlet of the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Post‐fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post‐fire erosion rates has been at small scales (100 m2 or less), and post‐fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post‐fire bedload sediment delivery rates for spatial scales up to 117 ha using sediment yield data from six published studies and two recently established study sites. Sediment yields and sediment delivery ratios (SDRs; sediment delivered at the catchment scale divided by the sediment delivered from a plot nested within the catchment) were related to site factors including rainfall characteristics, area, length, and ground cover. Unit‐area sediment yields significantly decreased with increasing area in five of the six sites. The annual SDRs ranged from 0.0089 to 1.15 and these were more closely related to the ratio of the plot lengths than the ratio of plot areas. The developed statistical relationships will help quantify post‐fire sediment delivery rates across spatial scales in the interior western United States and develop process‐based scaling relationships. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This methods paper details the first attempt at monitoring bank erosion, flow and suspended sediment at a site during flooding on the Mekong River induced by the passage of tropical cyclones. We deployed integrated mobile laser scanning (MLS) and multibeam echo sounding (MBES), alongside acoustic Doppler current profiling (aDcp), to directly measure changes in river bank and bed at high (~0.05 m) spatial resolution, in conjunction with measurements of flow and suspended sediment dynamics. We outline the methodological steps used to collect and process this complex point cloud data, and detail the procedures used to process and calibrate the aDcp flow and sediment flux data. A comparison with conventional remote sensing methods of estimating bank erosion, using aerial images and Landsat imagery, reveals that traditional techniques are error prone at the high temporal resolutions required to quantify the patterns and volumes of bank erosion induced by the passage of individual flood events. Our analysis reveals the importance of cyclone‐driven flood events in causing high rates of erosion and suspended sediment transport, with a c. twofold increase in bank erosion volumes and a fourfold increase in suspended sediment volumes in the cyclone‐affected wet season. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Reliable estimation of low flows at ungauged catchments is one of the major challenges in water‐resources planning and management. This study aims at providing at‐site and ungauged sites low‐flow frequency analysis using regionalization approach. A two‐stage delineating homogeneous region is proposed in this study. Clustering sites with similar low‐flow L‐moment ratios is initially conducted, and L‐moment‐based discordancy and heterogeneity measures are then used to detect unusual sites. Based on the goodness‐of‐fit test statistic, the best‐fit regional model is identified in each hydrologically homogeneous region. The relationship between mean annual 7‐day minimum flow and hydro‐geomorphic characteristics is also constructed in each homogeneous region associated with the derived regional model for estimating various low‐flow quantiles at ungauged sites. Uncertainty analysis of model parameters and low‐flow estimations is carried out using the Bayesian inference. Applied in Sefidroud basin located in northwestern Iran, two hydrologically homogeneous regions are identified, i.e. the east and west regions. The best‐fit regional model for the east and west regions are generalized logistic and Pearson type III distributions, respectively. The results show that the proposed approach provides reasonably good accuracy for at‐site as well as ungauged‐site frequency analysis. Besides, interval estimations for model parameters and low flows provide uncertainty information, and the results indicate that Bayesian confidence intervals are significantly reduced when comparing with the outcomes of conventional t‐distribution method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Process dynamics in fluvial‐based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam‐building affect fluvial processes, the complexity in local response can be further increased by flood‐ and sediment‐limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi‐temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446‐km‐long semi‐arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam‐controlled fluvial sand bar deposition, aeolian sand transport, and rainfall‐induced erosion. Empirical rainfall‐erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration‐excess overland flow and gullying govern large‐scale (centimeter‐ to decimeter‐scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic‐driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four‐minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short‐term, storm‐driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi‐arid landscapes where process complexity may not be fully understood. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

9.
The cartography of erosion risk is mainly based on the development of models, which evaluate in a qualitative and quantitative manner the physical reproduction of the erosion processes (CORINE, EHU, INRA). These models are mainly semi‐quantitative but can be physically based and spatially distributed (the Pan‐European Soil Erosion Risk Assessment, PESERA). They are characterized by their simplicity and their applicability potential at large temporal and spatial scales. In developing our model SCALES (Spatialisation d'éChelle fine de l'ALéa Erosion des Sols/large‐scale assessment and mapping model of soil erosion hazard), we had in mind several objectives: (1) to map soil erosion at a regional scale with the guarantee of a large accuracy on the local level, (2) to envisage an applicability of the model in European oceanic areas, (3) to focus the erosion hazard estimation on the level of source areas (on‐site erosion), which are the agricultural parcels, (4) to take into account the weight of the temporality of agricultural practices (land‐use concept). Because of these objectives, the nature of variables, which characterize the erosion factors and because of its structure, SCALES differs from other models. Tested in Basse‐Normandie (Calvados 5500 km2) SCALES reveals a strong predisposition of the study area to the soil erosion which should require to be expressed in a wet year. Apart from an internal validation, we tried an intermediate one by comparing our results with those from INRA and PESERA. It appeared that these models under estimate medium erosion levels and differ in the spatial localization of areas with the highest erosion risks. SCALES underlines here the limitations in the use of pedo‐transfer functions and the interpolation of input data with a low resolution. One must not forget however that these models are mainly focused on an interregional comparative approach. Therefore the comparison of SCALES data with those of the INRA and PESERA models cannot result on a convincing validation of our model. For the moment the validation is based on the opinion of local experts, who agree with the qualitative indications delivered by our cartography. An external validation of SCALES is foreseen, which will be based on a thorough inventory of erosion signals in areas with different hazard levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The degradation of grasslands is a common problem across semi‐arid areas worldwide. Over the last 150 years, much of the south‐western United States has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Plot‐based experiments to determine how spatio‐temporal characteristics of soil moisture, runoff and erosion change over a transition from grassland to shrubland were carried out at four sites over a transition from black grama (Bouteloua eriopoda) grassland to creosotebush (Larrea tridentata) shrubland at the Sevilleta NWR LTER site in New Mexico. Each site consisted of a 10 × 30 m bounded runoff plot and adjacent characterization plots with nested sampling points where soil moisture content was measured. Results show distinct spatio‐temporal variations in soil moisture content, which are due to the net effect of processes operating at multiple spatial and temporal scales, such as plant uptake of water at local scales versus the redistribution of water during runoff events at the hillslope scale. There is an overall increase in runoff and erosion over the transition from grassland to shrubland, which is likely to be associated with an increase in connectivity of bare, runoff‐generating areas, although these increases do not appear to follow a linear trajectory. Erosion rates increased over the transition from grassland to shrubland, likely related in part to changes in runoff characteristics and the increased capacity of the runoff to detach, entrain and transport sediment. Over all plots, fine material was preferentially eroded which has potential implications for nutrient cycling since nutrients tend to be associated with fine sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In peatlands, fluvial erosion can lead to a dramatic decline in hydrological function, major changes in the net carbon balance and loss of biodiversity. Climate and land management change are thought to be important influences on rates of peat erosion. However, sediment production in peatlands is different to that of other soils and no models of erosion specifically for peatlands currently exist. Hence, forecasting the influence of future climate or spatially‐distributed management interventions on peat erosion is difficult. The PESERA‐GRID model was substantially modified in this study to include dominant blanket peat erosion processes. In the resulting fluvial erosion model, PESERA‐PEAT, freeze–thaw and desiccation processes were accounted for by a novel sediment supply index as key features of erosion. Land management practices were parameterized for their influence on vegetation cover, biomass and soil moisture condition. PESERA‐PEAT was numerically evaluated using available field data from four blanket peat‐covered catchments with different erosion conditions and management intensity. PESERA‐PEAT was found to be robust in modelling fluvial erosion in blanket peat. A sensitivity analysis of PESERA‐PEAT showed that modelled sediment yield was more sensitive to vegetation cover than other tested factors such as precipitation, temperature, drainage density and ditch/gully depth. Two versions of PESERA‐PEAT, equilibrium and time‐series, produced similar results under the same environmental conditions, facilitating the use of the model at different scales. The equilibrium model is suitable for assessing the high‐resolution spatial variability of average monthly peat erosion over the study period across large areas (national or global assessments), while the time‐series model is appropriate for investigating continuous monthly peat erosion throughout study periods across smaller areas or large regions using a coarser‐spatial resolution. PESERA‐PEAT will therefore support future investigations into the impact of climate change and management options on blanket peat erosion at various spatial and temporal scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Reconstruction of high‐frequency erosion variability beyond the instrumental record requires well‐dated, high‐resolution proxies from sediment archives. We used computed tomography (CT) scans of finely laminated silt layers from a lake‐sediment record in southwest Oregon to quantify the magnitude of natural landscape erosion events over the last 2000 years in order to compare with palaeorecords of climate, forest fire, and seismic triggers. Sedimentation rates were modeled from an age–depth relationship fit through five 14C dates and the 1964 AD 137Cs peak in which deposition time (yr mm‐1) varied inversely with the proportion of silt sediment measured by the CT profile. This model resulted in pseudo‐annual estimates of silt deposition for the last 2000 years. Silt accumulation during the past 80 years was strongly correlated with river‐discharge at annual and decadal scales, revealing that erosion was highly responsive to precipitation during the logging era (1930–present). Before logging the frequency–magnitude relationship displayed a power‐law distribution that is characteristic of complex feedbacks and self‐regulating mechanisms. The 100‐year and 10‐year erosion magnitude estimated in a 99‐year moving window varied by 1.7 and 1.0 orders of magnitude, respectively. Decadal erosion magnitude was only moderately positively correlated with a summer temperature reconstruction over the period 900–1900 AD. Magnitude of the seven largest events was similar to the cumulative silt accumulation anomaly, suggesting these events ‘returned the system’ to the long‐term mean rate. Instead, the occurrence of most erosion events was related to fire (silt layers preceded by high charcoal concentration) and earthquakes (the seven thickest layers often match paleo‐earthquake dates). Our data show how internal (i.e. sediment production) and external processes (natural fires or more stochastic events such as earthquakes) co‐determine erosion regimes at millennial time scales, and the extent to which such processes can be offset by recent large‐scale deforestation by logging. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
Although the impact of sheet erosion on the evolution of soils, soil properties and associated ecosystem services across landscapes is undisputed, there are still large uncertainties in the estimation of sheet erosion, as the results obtained are highly scale dependent. Consequently, there is a need to develop a scale‐explicit understanding of sediment erosion yields, from microplot to hillslope through to plot, to surmount actual erosion modelling flaws and to improve guidance for erosion mitigation. The main objective of this study was to compare sediment yields from small and large plots installed under different environmental conditions and to interpret these results in terms of the main mechanisms and controlling factors of sheet erosion. Fifteen 1 × 1 m² and ten 2 × 5 m² plots were installed on a hillslope in the foothills of the Drakensberg, South Africa. Data of runoff, sediment concentration (SC), soil loss (SL) and rainfall characteristics obtained during the 2009–2010 rainy season at the two spatial scales and from different soils, vegetation cover, geology and topographic conditions were used to identify the main controlling factors of sheet erosion. Scale ratios for SC and SL were subsequently calculated to assess the level of contribution of rain‐impacted flow (RIF) to overall sheet erosion. The average runoff rate (n = 17 events) ranged between 4.9 ± 0.4 L m‐2 on 1 m2 and 5.4 ± 0.6 L m2 on 10 m2, which did not correspond to significant differences at P < 0.05 level. Sediment losses were significantly higher on the 10 m2 plots, compared with the 1 m2 plots (2.2 ± 0.4 vs 1.5 ± 0.2 g L‐1 for SC; 9.8 ± 1.8 vs 3.2 ± 0.3 g m‐2 for SL), which illustrated a greater efficiency of sheet erosion on longer slopes. Results from a principal component analysis, whose two first axes explained 60% of the data variance, suggested that sheet erosion is mainly controlled by rainfall characteristics (rainfall intensity and amount) and soil surface features (crusting and vegetation coverage). The contribution of RIF to sheet erosion was the lowest at high soil clay content (r = 0.26) and the highest at high crusting and bulk density (r = 0.22), cumulative rainfall amount in the season and associated rise in soil water table (r = 0.29). Such an explicit consideration of the role of scale on sediment yields and process domination by either in situ (soil and soil surface conditions) or ex situ (rainfall characteristics and antecedent rainfall) factors, is expected to contribute to process‐based modelling and erosion mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an erosion model, ARMOUR, which simulates time‐varying runoff, erosion, deposition and surface armour evolution down a hillslope either as a result of a single erosion event or as the cumulative impact of many events over periods up to decades. ARMOUR simulates sediment transport for both cohesive and non‐cohesive soil and dynamically differentiates between ‘transport‐limited’ and ‘source‐limited’ processes. A variety of feasible processes for entrainment of different size classes can be modelled and evaluated against data. The generalized likelihood of uncertainty estimation (GLUE) technique was used to calibrate and validate ARMOUR using data collected during rainfall simulator experiments at two contrasting sites: (1) non‐cohesive stony sediments at Ranger Uranium Mine, Northern Territory, Australia; and (2) cohesive silty sediments at Northparkes Gold Mine, NSW, Australia. The spatial and temporal variations of model predictions within the individual runoff events showed that some entrainment processes could not model the spikes in concentration and subsequent depletion, while the hiding model of Andrews and Parker best simulated the concentration trends for both calibrated and independent runoff events. ARMOUR also successfully captured the coarsening of the surface material, though small, over the duration of the rainfall simulator trials. This was driven by the depletion of the finest size class of the soil. For a constant discharge, ARMOUR simulated higher sediment flux at the start of the storm with the sediment flux and concentration diminishing with time. For natural rainfall a power law relationship between sediment flux and discharge was observed. The calibration exercise showed that sediment concentration and discharge alone are insufficient to calibrate all aspects of the physics, in particular the armour depth. This appears to be because the armouring during the short duration events is driven by depletion of the finest classes of the sediments (diameters less then 62·5 mm), which are not normally measured. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Due to shortage of rainfall and its increasing variability, moisture stress is identified to be one of the most critical factors affecting agricultural productivity in the drylands of Ethiopia. To circumvent this problem, a strategy of supplemental irrigation through surface water harvesting was adopted by the government and several micro‐dams have been built in the semi‐arid parts of the country. However, the benefits from the water harvesting schemes are not sustainable because of rapid water storage loss due to siltation. There is, therefore, an urgent need for improved catchment‐based erosion control and sediment management strategies. The design and implementation of such strategies require data on the rate and magnitude of sediment deposition. To this end, reservoir surveys were conducted to estimate sediment deposition rate for 11 reservoirs identified to be representative of catchments in the Tigray region of northern Ethiopia. Two approaches were employed during the survey: one was based on measurement of sediment thickness in reservoirs while the other was based on comparing the original and existing topography of the reservoir‐beds. The average annual sediment yield estimated for the study sites was about 19 t ha?1 y?1. An equation of the type SSY = 3á36A0á67 (with SSY = area specific sediment yield in t ha?1 y?1 and A = catchment area in km2) was also established for the study region, which is opposite to the ‘universal’ SSY–A relationship. In order to improve the sediment yield predictive capability of A, it was integrated with a factorial index that assesses the catchment's propensity to erosion and potential sediment yield. The effect of accelerated sediment deposition on water storage loss of reservoirs and possible controlling factors of the SSY–A relationship are outlined. The potential semi‐quantitative scoring approach to characterize catchments in terms of erosion sensitivity and the significance of the A‐index approach to predict SSY of similar catchments are also highlighted. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Large‐scale flow structures (LSFS) in the streamwise direction are important features of gravel‐bed river flows, because they may contribute to sediment transport and gas exchange. In the present study, these structures are detected using Huang's empirical mode decomposition and reconstructed with phase‐averaging techniques based on a Hilbert transform of the velocity signal. The analysis is based on the fluctuating component of 15 quasi‐instantaneous velocity profiles measured with a three‐dimensional (3D) acoustic Doppler velocity profiler (ADVP) in an armoured gravel‐bed river with a low relative submergence of 2.9 (ratio between flow depth and bed grain diameter). LSFS were identified in most of the measured profiles and consistently showed similar features. We were able to characterize the geometry of these large‐scale coherent structures: the front has a vertical linear shift in the time domain and a vertical profile corresponding to a first quarter moon with the apex situated at z/h ≈ 0.4. In the vertical, the front scales with flow depth h, and in the streamwise direction, LSFS scale with three to seven times the mean flow depth. On the bed, the effect of LSFS is a periodic non‐linear variation of the friction velocity on average between 0.90 and 1.10 times the mean value. A model for the friction velocity cycle resulting from LSFS oscillation is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号