首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on a first attempt of using the virtual velocity approach to assess sediment mobility and transport in two wide and complex gravel‐bed rivers of northern Italy. Displacement length and virtual velocity of spray‐painted tracers were measured in the field. Also, the thickness of the sediment active layer during floods was measured using scour chains and post‐flood morphological changes as documented by repeated survey of channel cross‐sections. The effects of eight and seven floods were studied on the Tagliamento and Brenta Rivers, where 259 and 277 spray‐painted areas were surveyed, respectively. In the Tagliamento River 36% of the spray‐painted areas experienced partial transport, whereas in the Brenta River this accounted for 20%. Whereas, full removal/gravel deposition was observed on 37% and 26% of these areas on the Tagliamento and Brenta Rivers, respectively. The mean displacement length of particles, the thickness of the active layer and the extent of partial transport are well correlated with the dimensionless shear stress. The virtual velocity approach allowed calculation of bed material transport over a wide range of flood magnitudes. Annual coarse sediment transport was calculated up to 150 for the Tagliamento, and 30 × 103  m3 yr?1 for the Brenta. The outcomes of this work highlight the relevance of partial transport condition, as it could represent more than 70% of the total bed material transported during low‐magnitude floods, and up to 40% for near‐bankfull events. Results confirm that bed material load tends to be overestimated by traditional formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Bedload transport measurements in two upland streams are considered as a function of the excess stream power exerted on the bed by the flow. During low flows when the framework gravels remain undisturbed, fine sediments are winnowed from the bed-surface layer once a threshold of 3·4 W m?2 is exceeded and the transport rate is strongly supply limited. However for stream powers in excess of 15 W m?2 framework gravels are mobilized and the efficiency of the transport process approaches a local maximum of about 1 per cent for discharges up to 2/3 of bankfull. An inverse depth dependence in the efficiency of the transport process was noted but although bedload calibre increased as a function of discharge its influence on efficiency could not be demonstrated. However it was suspected that the size-sorting relationships of the bed-material in a number of rivers in relation to the transport efficiency might profitably be examined further.  相似文献   

4.
Indirect, passive approaches for monitoring coarse bedload transport could allow cheaper, safer, higher‐resolution, longer‐term data that revolutionises bedload understanding and informs river management. Here, insights provided by seismic impact plates in a downstream reach of a flashy gravel‐bed river (River Avon, Devon, UK) are explored in the context of plate performance. Monitoring of a centrally‐situated plate (IP1) during an extremely wet 12‐month period demonstrated that impacts were related to discharge as a measure of transport potential (R2 = 0.38) but that factors other than transport limitations are important. Analysis of discrete flow events revealed consistent rising‐limb and falling‐limb impact spikes biased toward the latter for larger events. Such patterns may result from disruption of the upstream armour layer (rising limb) and supply enhancements related to both upstream mass bank failures and/or flood routing of non‐local sediment sources (falling limb). Installation of additional impact plates indicated that plate IP1 was indeed dominantly related to instantaneous discharge, that a three‐plate lateral array somewhat better explained impact variability (R2 = 0.49), and that the bedload track shifts laterally with discharge. Aggregating event‐total IP1 impacts against volumetric discharge further increases explanation as intra‐event and stochastic bedload factors are subsumed but left 26% unexplained variance related to the unsampled bedload mass, inter‐event supply differences, and attributes of plate performance. Annualising the data created an impact‐based 'effective discharge’ for this extremely wet year that was closer to morphological bar‐full in magnitude than bankfull, but the preceding results imply this outcome is related as much to supply limitations as transport limitations. Overall, passive approaches offer a liberating prospect for bedload monitoring, capable of producing insights only achievable through high resolution, extended time periods. Such results could potentially inform threshold conditions and geomorphological effectiveness of flows for future river management strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Differences in the transport rate and size of bedload exist for varying levels of flow in coarse‐grained channels. For gravel‐bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface. Transport rates during Phase II are considerably greater than Phase I and more coarse grains are moved, including material from both the channel surface and subsurface. Transition from Phase I to Phase II indicates initiation and transport of grains comprising the coarse surface layer common in steep mountain channels. While the existence of different phases of transport is generally acknowledged, the threshold between them is often poorly defined. We present the results of the application of a piecewise regression analysis to data on bedload transport collected at 12 gravel‐bed channels in Colorado and Wyoming, USA. The piecewise regression recognizes the existence of different linear relationships over different ranges of discharge. The inflection, where the fitted functions intersect, is interpreted as the point of transition from Phase I to Phase II transport; this is termed breakpoint. A comparison of grain sizes moved during the two phases shows that coarse gravel is rarely trapped in the samplers during Phase I transport, indicating negligible movement of grains in this size range. Gravel larger than about D16 of the channel surface is more consistently trapped during Phase II transport. The persistence of coarse gravel in bedload samples provides good evidence that conditions suitable for coarse grain transport have been reached, even though the size of the sediment approaches the size limits of the sampler (76 mm in all cases). A relative breakpoint (Rbr) was defined by the ratio between the discharge at the breakpoint and the 1·5‐year flow (a surrogate for bankfull discharge) expressed as a percentage. The median value of Rbr was about 80 percent, suggesting that Phase II begins at about 80 percent of the bankfull discharge, though the observed values of Rbr ranged from about 60 to 100 percent. Variation in this value appears to be independent of drainage area, median grain size, sorting of bed materials, and channel gradient, at least for the range of parameters measured in 12 gravel‐bed channels. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

6.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Large wood (LW) transport can increase greatly during floods, leading to accumulations at river infrastructures. To mitigate the potential flood hazard, racks are a common method to retain LW upstream of endangered settlements or infrastructures. The majority of LW retention racks consist of vertical bars and, therefore, disrupt bedload transport. It can be hypothesized that inclined racks reduce backwater rise and local scour, as wood will block the upper part of the rack, thereby increasing the open flow cross-section below the accumulation. Flume experiments were conducted under clear water conditions to analyse backwater rise and local scour as a function of (1) rack inclination, (2) hydraulic inflow condition, (3) uniform bed material, and (4) LW volume. In addition, the first experiments were performed under live bed scour conditions to study the effect of bedload transport on local scour and backwater rise. Based on the experiments, backwater rise and local scour decrease with decreasing rack angle to the horizontal. LW predominantly accumulated at the upper part of the rack, leading to an open flow cross-section below the accumulation. The effect of rack angle was included in existing design equations for backwater rise and local scour depth. In addition, the first experiments with bedload transport resulted in smaller backwater rise and local scour depth. This study contributes to an enhanced process understanding of wood retention and bedload transport at rack structures and an improved design of LW retention racks. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Vertical sediment exchange is a fundamental component of bedload transport in gravel‐bed channels. This paper describes the characteristic depth of exchange achieved over a long flood series. Analysis is based on 11 recoveries of magnetically tagged gravels deployed in Carnation Creek, Canada, completed between 1990 and 2008. Vertical grain exchange mixes gravels throughout the streambed relatively rapidly. Within one to eight floods the mean burial depth approaches two times the surface layer thickness, quantified by the 90th percentile of the size distribution. Finer gravels are mixed more rapidly into the bed than coarser gravels. Both active and passive grain exchanges throughout most of the bed produce the overall vertical distribution of marked grains. Gravel exchanges exhibit fairly consistent patterns once tracers are well mixed by large floods. Results highlight the role of flood sequence in determining exchange depths, support the notion of an upper limit to exchange, and underscore the importance of passive grain exchange. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The local reach gradient of small gravel bed rivers (drainage area 0-8-110 km2) in the Eifel, West Germany, is adjusted to transport the river bed sediments. Transport of gravel becomes possible under high flow conditions (Shields entrainment factor ≈-03). Mean bed material size for riffle sections increases with distance downstream. For small drainage areas channel slope is a negative exponential function of drainage area, while for the larger region the additional influence of bedload size has to be considered. Good agreement with Hack's data (1957) for Virginia and Maryland, U.S.A., is achieved (S = 0.0066 (D50/A)- 40., r = 0.67).  相似文献   

12.
Present understanding of armour formation and the dynamics of grain entrainment and movement, especially in natural environments with coarse and poorly-sorted bed material, is still incomplete. There are many details which require further field observation for clarification and hypothesis testing, including aspects of grain interaction during bedload transport. Evidence from the Tambo River suggests that there may be mechanisms of armour development which have significance in certain field situations but which have been relatively neglected in the literature. The particular mechanism envisaged for the Tambo River involves the accumulation on the bed surface of large clasts which had been moving as an overpassing traction carpet. These clasts are not genetically related to the underlying subarmour sediments, but nonetheless act as an armour which protects them from scour, and which hence affects grain mobility and bedload transport rates.  相似文献   

13.
While clay and silt matrices of gravel‐bed rivers have received attention from ecologists concerned variously with the deteriorating environments of benthic and hyporheic organisms, their impact on sediment entrainment and transport has been explored less. A recent increase of such a matrix in the bed of Nahal Eshtemoa, an ephemeral river of the northern Negev, has more than doubled the boundary shear stress needed to initiate bedload, from 7 N m‐2* = 0.027) during the flash floods of 1991–2001 to 15 N m‐2* = 0.059) during those of 2008–2009. The relation between bedload flux and boundary shear stress continues to be well‐defined, but it is displaced. The matrix now contains a significant amount of silt and clay size material. The reasons for the increased entrainment threshold of bedload are explored. Large‐scale laser scanning of the dry bed reveals a reduction in grain‐scale morphological roughness, while artificial in situ tests of matrix integrity indicate considerable cohesion. The implications for adopting bed material sampling strategies that account for matrix development are assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Discharge characteristics in six adjacent mountainous watersheds in northern New Mexico, U.S.A., vary substantially between basins underlain by different lithologies. Relatively resistant gneisses and granites underlie two basins (drainage areas: 43 and 94 km2) that have high unit discharge (0·010 to 0·14 m3s?1 km?2), high bankfull discharge, and sustained high discharge. Less resistant sandstones and shales underlie four basins (drainage areas: 96 to 215 km2) that have relatively low unit discharge (0·001 to 0·005 m3s?1 km?2), relatively low bankfull discharge, and peak discharges that are not sustained as long as those in the crystalline terrane. Analysis of snowmelt-runoff water budgets suggests that three factors control hydrologic conditions in the basins. First, area-elevation distributions appear to control the timing and amounts of water input. These distributions probably reflect the erosional resistance of the different lithologies. Second, lithology appears to control runoff production in areas having minor amounts of storage. Third, glacial deposits in headwater regions control discharge duration and timing via storage and return flow releases. The amount of return flow released by glacial deposits, however, is probably controlled by the permeability of underlying bedrock. Therefore it appears that the duration, timing, and magnitude of discharge events in the study area are controlled both directly and indirectly by lithology. Stream power and shear stress estimates derived from bankfull discharge and bed-material size data suggest that higher bedload transport rates and larger bedload particle sizes exist in streams draining crystalline rocks than in streams draining sedimentary terrane. It appears that source-area lithology, by controlling discharge production, also influences stream power, bedload transport capabilities, and therefore total amounts of bedload transport.  相似文献   

16.
In a mountain environment, the transport of coarse material is a key factor for many fields such as geomorphology, ecology, hazard assessment, and reservoir management. Despite this, there have been only a few field investigations of bedload, in particular using multiple monitoring methods. In this sense, attention has frequently focused on the effects of “high magnitude/low frequency floods” rather than on “ordinary events”. This study aims to analyze the sediment dynamics triggered by three high-frequency floods (recurrence interval “RI” between 1.1 and 1.7 yr) that occurred in the Rio Cordon basin during 2014. The flood events were investigated in terms of both sediment mobility and bedload magnitude. The Rio Cordon is an Alpine basin located in northeastern Italy. The catchment has a surface area of 5 km2, ranging between 1763 and 2763 m above sea level. The Rio Cordon flows on an armored streambed layer, with a stable step-pool configuration and large boulders. Since 1986, the basin has been equipped with a permanent station to continuously monitor water discharge and sediment flux. To investigate sediment mobility, 250 PIT-tags were installed in the streambed in 2012. The 2014 floods showed a clear difference in terms of tracer displacement. The near-bankfull events showed equal mobility conditions, with mean travel distance one order of magnitude higher than the below-bankfull event. Furthermore, only the near-bankfull events transported coarse material to the monitoring station. Both events had a peak discharge up to 2.06 m3 s-1, but the bedload transport rates differed by more than one order of magnitude, proving that under the current supply-limited condition, the bedload appears more related to the sediment supply than to the magnitude of the hydrological features. In this sense, the results demonstrated that near-bankfull events can mobilize large amounts of material for long distances, and that floods of apparently similar magnitude may lead to different sediment dynamics, depending on the type and amount of sediment supply.  相似文献   

17.
In a small experimental catchment of the Dolomites (Rio Cordon, 5 km2) field observations have been carried out on the movement of various sized bed material particles. Displacement length of 860 marked pebbles, cobbles and boulders (0·032 < D < 0·512 m) has been measured along the river bed during individual snowmelt and flood events in the periods 1993–1994 and 1996–1998. Floods were grouped into two categories. The first includes ‘ordinary’ events, which are characterized by peak discharges with a return period of 1–5 years and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return period of 50–60 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. The variation according to grain size of total displacement length Li depends on the degree of mobilization of the individual fractions of the bed surface: Li is independent of Di for smaller, fully mobile grain sizes and decreases rapidly with Di for larger fractions in a state of partial transport. Sustained selective transport without a supply of sediment from upstream leads to the development of a stable coarse armoured surface through progressive winnowing of finer material from the bed surface. With supply unlimited conditions for transport, both the occurrence of extreme events and the duration of a sequences of ‘ordinary’ floods play an important role in the degree of mobilization of the individual fractions of the bed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Most gravel‐bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the ability of the stream to transport these sizes, for other sizes of particles the supply may match or even exceed the ability of the channel to transport these particles. These sizes of particles are called ‘supply‐limited’ and ‘hydraulically limited’ in their transport, respectively, and can be differentiated in dimensionless sediment transport rating curves by size fractions. The supply‐ and hydraulically limited sizes can be distinguished also by comparing the size of particles of the surface and subsurface. Those sizes that are supply‐limited are winnowed from the bed and are under‐represented in the surface layer. Progressive truncation of the surface and subsurface size distributions from the ?ne end and recalculation until the size distributions are similar (collapse), establishes the break between supply‐ and hydraulically limited sizes. At sites along 12 streams in Idaho ranging in drainage area from about 100 to 4900 km2, sediment transport rating curves by size class and surface and subsurface size distributions were examined. The break between sizes that were supply‐ and hydraulically limited as determined by examination of the transport rate and surface and subsurface size distributions was similar. The collapse size as described by its percentile in the cumulative size distribution averaged D36 of the surface and D73 of the subsurface. The discharge at which the collapse size began to move averaged 88 per cent of bankfull discharge. The collapse size decreased as bed load yield increased and increased with the degree of selective transport. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号