首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
利用甘肃和青海两省固定宽频带地震台记录的远震波形资料,挑选高质量SKS震相,联合使用最小切向能量方法和旋转互相关方法获得230对高信噪比分裂参数;同时对接收函数中Pms震相随方位角的变化进行拟合,得到了24个台站的地壳各向异性分裂参数.整个区域SKS分裂快波方向均值为123°,Pms分裂快波方向均值为132°,且大部分区域SKS、Pms快波方向与地表构造走向相一致,说明青藏高原东北缘以岩石圈垂直连贯变形为主,地壳上地幔相互耦合.SKS、Pms分裂时差均值分别为1.0s和0.6s,显示地壳各向异性对于SKS分裂时差有较大贡献.昆仑断裂附近Pms、SKS分裂快波方向与昆仑断裂走向基本一致,说明昆仑断裂可能是岩石圈尺度深大断裂;而阿尔金断裂东缘二者快波方向显著差异意味着阿尔金断裂在东缘可能仅为地壳尺度的断裂.  相似文献   

2.
An ScP phase reflected and converted at the core–mantle boundary (CMB) beneath the region east of the Philippine Islands shows clear pre- and postcursors, recorded on short-period seismic networks in Japan. These waveform variations can be explained by interaction of the ScP wavefield with thin layers at the CMB. The results of forward modeling of double-array stacks reveal two different structural heterogeneities in the lowermost mantle beneath the region east of the Philippine Islands. One of the structures represents a decreased velocity, and increased density across the reflector at the lowermost ~10 km of the mantle, with P- and S-wave velocity reductions of 5–10% and ~30%, respectively, and an increase in density of 5–10%. Another structure consists of a pair of reflectors at ~10 km and ~5 km above the CMB, both of which are characterized by reduced P- and S-wave velocities. The upper reflector is the interface of a low-velocity zone in which P- and S-wave velocities decrease of 10% and 30%, respectively, accompanied by an extremely large increase in density (20–25%). The lower reflector is characterized by a 25% reduction in S-wave velocity relative to the above low-velocity layer, as well as a 5% decrease in P-wave velocity and no change in density. The nature of the low-velocity zone detected locally at the CMB is comparable with that of ultra-low-velocity zones (ULVZs) observed by various seismic probes in the South Pacific and Central America. Extensive observations of the ULVZ beneath the region east of the Philippine Islands indicate massive partial melting at the bottom of the mantle. Low-S-velocity basal layer partly detected within the ULVZ may be resulting from core–mantle chemical interactions, driven by massive partial melting.  相似文献   

3.
We use thermodynamically self-consistent and hybrid methods to analyze the correlation of important physical parameters (e.g. bulk density, elastic moduli) with bulk Mg# and modal composition in mantle peridotites at upper mantle conditions. Temperature (anharmonic and anelastic), pressure and compositional derivatives for all these parameters are evaluated. The results show that the widely used correlations between Vp/Vs and Mg# in peridotites are strictly valid only for garnet-bearing assemblages at temperatures < 900 °C. The correlation breaks down when: i) spinel is the stable Al-rich phase in the assemblage and ii) when anelastic attenuation of seismic velocities becomes important (T ? 900 °C). This implies that the range of applicability of published Vp/Vs–Mg# correlations for the upper mantle is limited to a depth interval between the spinel–garnet phase transition and the 900 °C isotherm. We use numerical simulations to show that this depth interval is virtually nonexistent in lithospheres thinner than ~ 140 km and can comprise up to ~ 50% of the lithospheric mantle in thick (> 220 km) lithospheric domains. In addition, we show that for most of the upper mantle the expected Δ(Vp/Vs) values associated with compositional variations are smaller than the resolution limit of current seismological methods. All these considerations suggest that the Vp/Vs ratio is not a reliable measure of compositional variations and that for large parts of the upper mantle compositional anomalies cannot be separated from thermal anomalies on the basis of seismological studies only. We further confirm that the only reliable indicator of compositional anomalies in a peridotitic mantle is the ratio of density to shear wave velocities (ρ/Vs). Our results demonstrate that geophysical–petrological models (forward or inverse) that model these two fields (i.e. density and Vs) self-consistently within a robust thermodynamic framework are necessary for characterizing the small-scale thermal and compositional structure of the lithosphere and sublithospheric upper mantle.  相似文献   

4.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

5.
中国大陆及邻区SKS波分裂研究   总被引:12,自引:14,他引:12       下载免费PDF全文
SKS波分裂测量是研究大陆地幔的形变特征、探索大陆动力学和演化过程的重要工具. 本文对中国大陆及邻区地震台站的SKS波分裂现象进行了研究. 选用中国数字化宽频带地震台网(CB台网)和美国IRIS数据中心提供的三分量宽频带数字化地震资料,使用SC(Silver and Chan,1991)方法,得到了中国大陆及周边地区80多个台站下方上地幔各向异性参数,即快波偏振方向φ和快慢波到时差δt. 快波偏振方位在相同地块有一定的优势排列方向,大多数台站快波偏振方向都能与过去或现今大规模的构造运动得到很好的符合. 整个研究区域所得到的分裂延迟时间在0.4~2.4s之间,平均为1.2s. 根据SKS波测量得到的分裂参数,分析了该研究区域各向异性介质的特性,从而探索与岩石弹性各向异性相关的地球内部动力学过程.  相似文献   

6.
We report on a two-year seismic deployment in the Cape Verde Islands, one goal of which was to study the upper mantle to determine its structure under a hot spot that is stationary in the hot spot reference frame. We find from analysis of P-to-S receiver functions estimated from broadband seismic recordings that, within uncertainty, the time separation between the 410 and 660 km discontinuities is normal compared to radial earth models. Thus, to exist, even stationary hot spots do not require vertical thermal anomalies from deep melting sources anchored in the lower mantle or at the core–mantle boundary or their anomalies are narrower than ~ 250 km in the upper mantle.  相似文献   

7.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

8.
New geochemical and isotopic data are presented from the oldest part of the Cumbre Vieja volcano, La Palma (Canary Islands), located near the assumed emergence of the Canary mantle plume. The volcanics comprise a suite dominated by basanite flows with subordinate amounts of phono-tephrite, tephri-phonolite and phonolite flows and intrusives. Two compositionally different basanite groups have been identified, both with HIMU (high-μ)-type incompatible trace element characteristics: Primitive high-MgO basanites (10.7–12.1% MgO), found only at the base of a stratigraphic profile near Fuencaliente on the south coast, and intermediate-MgO basanites (6.0–7.3% MgO), exposed in the upper part of the profile and widespread on the east coast of La Palma. The high-MgO basanites are interpreted as near-primary mantle melts (primary composition 14–15% MgO) derived by progressive melting (2.9% to 4.5%) of a common lithospheric mantle source. Model calculations indicate that it is not possible to generate the intermediate-MgO basanites from the high-MgO group by crystal fractionation of observed phenocrysts. Relative to intermediate-MgO basanites, the high-MgO flows have lower concentrations of LIL and HFS elements, except for Ti, which is markedly enriched in the primitive rocks (3.7–4.7% TiO2 vs 3.4–3.9% TiO2). Fuencaliente volcanics display limited temporal isotopic variations suggested to be a result of mixing of melts originating from the rising plume and the metazomatized lithospheric mantle. 87Sr / 86Sr and 143Nd / 144Nd ratios range 0.70305–0.70311 and 0.51285–0.51291, respectively, while the corresponding ranges in Pb-isotope ratios are 206Pb / 204Pb = 19.46–19.64, 207Pb / 204Pb = 15.55–15.61, and 208Pb / 204Pb = 39.16–39.53. The overall variation of the Cumbre Vieja isotopic data can be accounted for by mixtures of three mantle components in the proportions 72–79% plume source (LVC = low velocity component), 9–16% depleted mantle (DM) and up to 12% enriched mantle (EMI). Negative Δ7 / 4 Pb (− 0.6 to − 5.4) in the Cumbre Vieja volcanics suggest derivation from a young HIMU mantle source. The relative abundance of plume source material increase in younger rocks in the Fuencaliente section, suggesting waning plume–lithosphere interaction during the emplacement of this part of the Cumbre Vieja volcano. The high-MgO volcanics define regular and systematic geochemical trends, interpreted as partial melting trends, when plotted against abundances of highly incompatible elements (P, Ce). Evaluation of minor and trace element variation in consecutive melts suggests control by residual amphibole, phlogopite, garnet and a Ti-bearing phase, possibly ilmenite. The melting mode changed gradually, allowing increasing input from residual phlogopite during partial melting. The residual mineralogy constrains the source region of the high-MgO basanites to the lowermost oceanic lithospheric mantle, presumably around 100 km depths.  相似文献   

9.
The Pannonian depression is an extensional back-arc basin in central Europe and is an integral part of the Alpine–Carpathian orogenic mountain belts. It can be characterized by thinned lower crust, shallow Moho discontinuity, high surface heat flow and Moho temperature, implying recent active tectonic processes. Imaging the velocity structure of the upper mantle may help us to better understand the structure and formation of the Pannonian region.In this paper, Pn traveltimes from regional earthquakes are used to tomographically image the lateral velocity variations in the uppermost mantle beneath the Pannonian basin. The set of linear tomographic equations, built up of the time term equation for each source–receiver pair, is solved by a truncated singular value decomposition algorithm. The explicit computation of the generalized inverse of the tomographic equations makes it possible to deduce both the resolution matrix and the model covariance matrix, allowing us to estimate the resolution and reliability of the solution.The mean compressional wave velocity in the uppermost mantle beneath the Pannonian basin is 7.9 km/s, substantially lower than the average continental Pn velocity of 8.1 km/s. It is mostly due to the high Moho temperature having values on average 400–500 °C more than those in the surrounding areas. The velocity anomalies range from −0.3 to 0.3 km/s relative to the mean velocity of 7.9 km/s. Due to high Moho temperature, below the North Hungarian range low (7.6–7.7 km/s) velocities can be found. High-velocity anomalies of around 8.1 km/s can be detected along the W-SW boundaries of Hungary and at the junction of the Pannonian basin and the Southern Carpathians. The Great Hungarian Plain shows average (7.9 km/s) Pn velocities.  相似文献   

10.
We report experimental observation of a sizable elastic anisotropy in a polycrystalline sample of ferromagnesian silicate in post-perovskite (ppv) structure. Using a novel composite X-ray transparent gasket to contain and synthesize ppv in a panoramic diamond-anvil cell along with oblique X-ray diffraction geometry, we observed the anisotropic lattice strain and {1 0 0} or {1 1 0} slip-plane texture in the sample at 140 GPa. We deduced the elasticity tensor (cij), orientation-dependent compressional wave velocities, polarization-dependent shear-wave velocities, and the velocity anisotropy of the silicate ppv. Our results are consistent with calculations and indicate that with sufficient preferred orientation, the elastic anisotropy of this phase can produce large shear-wave splitting.  相似文献   

11.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

12.
利用我国第24次和第25次南极科学考察队于2008年2月—2010年3月南极长城站记录到的地震事件数据进行剪切波分裂研究. 选取近震事件对Sg波进行剪切波分裂计算,结果表明快波偏振方向有两个,分别为北东向和近南北向; 慢波延迟时间的范围为1.45—5.17 ms/km,平均值为3.54 ms/km.同时选取长城站记录到的远震数据SKS波震相进行剪切波分裂计算,得出上地幔快波偏振方向优势取向为北东向, 慢波延迟时间平均值为1.60 s. 剪切波分裂结果显示长城站地区地壳和上地幔具有明显的各向异性, 并显示长城站地区地壳与上地幔快波偏振方向几乎平行,表明壳幔变形的一致关系.另外,地壳和上地幔各向异性的快波偏振方向不仅与长城站附近的海沟方向平行,同时也与绝对板块的运动方向平行.该结果进一步说明了绝对板块的运动是构成上地幔各向异性的主要原因.   相似文献   

13.
Garnet geochronology was used to provide the first direct measurement of the timing of eclogitization in the central Himalaya. Lu–Hf dates from garnet separates in one relict eclogite from the Arun River Valley in eastern Nepal indicate an age of 20.7 ± 0.4 Ma, significantly younger than ultra-high pressure eclogites from the western Himalaya, reflecting either different origins or substantial time lags in tectonics along strike. Four proximal garnet amphibolites from structurally lower horizons are 14–15 Ma, similar to post-eclogitization ages published for rocks along strike in southern Tibet. PT calculations indicate three metamorphic episodes for the eclogite: i) eclogite-facies metamorphism at ~ 670 °C and ≥ 15 kbar at 23–16 Ma; ii) a peak-T granulite event at ~ 780 °C and 12 kbar; and iii) late-stage amphibolite-facies metamorphism at ~ 675 °C and 6 kbar at ~ 14 Ma. The garnet amphibolites were metamorphosed at ~ 660 °C. Three models are considered to explain the observed PTt evolution. The first assumes that the Main Himalayan Thrust (basal thrust of the Himalayan thrust system) cuts deeper at Arun than elsewhere. While conceptually the simplest, this model has difficulty explaining both the granulite-facies overprint and the pulse of exhumation between 25 and 14 Ma. A second model assumes that (aborted) subduction, slab breakoff, and ascent of India's leading edge occurred diachronously: ~ 50 Ma in the western Himalaya, ~ 25 Ma in the central Himalaya of Nepal, and presumably later in the eastern Himalaya. This model explains the PTt path, particularly heating during initial exhumation, but implies significant along-strike diachroneity, which is generally lacking in other features of the Himalaya. A third model assumes repeated loss of mantle lithosphere, first by slab breakoff at ~ 50 Ma, and again by delamination at ~ 25 Ma; this model explains the PTt path, but requires geographically restricted tectonic behavior at Arun. The PTt history of the Arun eclogites may imply a change in the physical state of the Himalayan metamorphic wedge at 16–25 Ma, ultimately giving rise to the Main Central Thrust by 15–16 Ma.  相似文献   

14.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   

15.
青藏高原中部地壳和上地幔各向异性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
张智  田小波 《地球物理学报》2011,54(11):2761-2768
对布设于青藏高原中部INDEPTH-III宽频带数字地震台阵的41个台站记录的远震体波资料所提取出的P波接收函数和SKS波形资料做偏振分析,并采用以误差为权的叠加分析方法求得每一个台站的Pms和SKS快波偏振方向和快慢波的时间延迟,获得了从拉萨块体中部,经喀喇昆仑-嘉黎断裂系和班公湖-怒江缝合带,到羌塘块体中部的地壳和...  相似文献   

16.
Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone–Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 104–105 year timescales.At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year? 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/?0.1 mm year? 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3–5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/?0.3 mm year? 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year? 1). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt.A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~ 0.7 mm year? 1 in northern Mono Basin. This spatial pattern suggests that extension is transferred from more easterly fault systems, e.g., Fish Lake Valley fault, and localized on the Sierra Nevada frontal fault zone as the Eastern California Shear Zone–Walker Lane belt faulting is transferred through the Mina Deflection.  相似文献   

17.
We have studied the dependency between incoming plate structure, bending-related faulting, lithospheric hydration, and outer rise seismic activity offshore Maule, Chile. We derived a 2D Poisson's ratio distribution from P- and S-wave seismic wide angle data collected in the trench-outer rise. High values of Poisson's ratio in the uppermost mantle suggest that the oceanic lithosphere is highly hydrated due to the water infiltration through bending-related normal faults outcropping at the seafloor. This process is presumably facilitated by the presence of a seamount in the area. We conclude that water infiltrates deep into the lithosphere, when it approaches the Chile trench, producing a reduction of crustal and upper mantle velocities, supporting serpentinization of the upper mantle. Further, we observed a mantle Vp anisotropy of 8%, with the fast velocity axis running normal to the abyssal hill fabric and hence in spreading direction, indicating that outer rise processes have yet not affected anisotropy.The first weeks following the megatrust Mw = 8.8 Maule earthquake in 2010 were characterized by a sudden increase of the outer rise seismic activity, located between 34° S and 35°30′ S. We concluded that this phenomenon is a result of an intensification of the water infiltration process in the outer rise, presumably triggered by the main shock, whose epicenter was located some 100 km to the south east of the cluster.  相似文献   

18.
We report volatile (H2O, CO2, F, S, Cl) and trace element data for submarine alkalic basalt glasses from the three youngest Samoan volcanoes, Ta'u, Malumalu and Vailulu'u. Most samples are visibly sulfide saturated, so have likely lost some S during fractionation. Cl / K ratios (0.04–0.15) extend to higher values than pristine MORBs, but are suspected to be partly due to source differences since Cl / K roughly varies as a function of 87Sr / 86Sr. There are no resolvable differences in the relative enrichment of F among sources, and compatibility of F during mantle melting is established to be nearly identical to Nd. Shallow degassing has affected CO2 in all samples, and H2O only in the most shallowly erupted samples from Vailulu'u. Absolute water contents are high for Samoa (0.63–1.50 wt.%), but relative enrichment of water compared to equally incompatible trace elements (Ce, La) is low and falls entirely below normal MORB values. H2O / Ce (58–157) and H2O / La (120–350) correlate inversely with 87Sr / 86Sr compositions (0.7045–0.7089). This leads us to believe that, because of very fast diffusion of hydrogen in mantle minerals, recycled lithospheric material with high initial water and trace element content will lose water to the drier ambient mantle during storage within the inner Earth. The net result is the counter-intuitive appearance of greater dehydration with greater mantle enrichment. We expect that subducted slabs will experience a two-stage dehydration history, first within subduction zones and then in the ambient mantle during long-term convective mixing.  相似文献   

19.
Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN(郑斯华)(高原)Azimuthalanisotropyinlit...  相似文献   

20.
At longer periods, scattered ScS waves sometimes dominate over coda waves at large lapse times. Examining recordings of seismic envelopes at 9 IRIS seismic stations of regional earthquakes with focal depths deeper than 150 km in periods from 1 to 20 s for a wide lapse time range up to 2000 s, we found significant frequency dependence. The coda decay gradient at short periods is steeper than that at longer periods; however, the change of coda gradient associated with the ScS arrival becomes distinct as the period becomes longer. In particular, a clear offset of coda amplitude appears in central Asia for 10 and 15 s period bands. The multiple isotropic scattering process of S-waves in the heterogeneous mantle can be simply simulated by using the Monte Carlo simulation method based on the radiative transfer theory in scattering media. Assuming a two-plane-layer attenuation structure and smoothed velocity model of the PREM, we estimated the average total scattering coefficients of S-waves such as 7.52 × 10 4∼1.32 × 10 3 km 1 and 2.08 × 10 4∼6.23 × 10 4 km 1 at 4 s, and 4.51 × 10 4∼7.37 × 10 4 km 1 and 2.80 × 10 5∼2.71 × 10 4 km 1 at 10 s, for the lithosphere and the upper mantle and for the lower mantle, respectively. Our results indicate that scattering occurs mostly in the lithosphere and the upper mantle and support that medium heterogeneity spreads over the whole mantle though its scattering power is small. Strong scattering occurs beneath central Asia and Papua New Guinea, whereas the scattering beneath Italy and regions of east Russia is much weaker. The numerical calculation enables us to confirm that much stronger scattering than intrinsic attenuation causes the offset behavior with coda decay gradient change after the ScS arrival for 4 and 10 s period bands in some regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号