首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of natural sinkhole phenomena in Italian plain areas   总被引:2,自引:0,他引:2  
Italian sinkholes, which are mainly related to karst phenomena (i.e., solution sinkholes, collapse sinkholes, etc.), are widespread along the Apennine ridge and in pedemontane areas where there are carbonatic bedrock outcrops. However, other collapses, which seem unrelated to karst dissolution, have been identified in plain areas with a thick sedimentary cover over buried bedrock. The main goal of this work is to study the geological, geomorphological, and structural setting of these areas to identify the possible mechanism of the generation and evolution of these collapses. About 750 cases were identified by research based on historical archives, specific geological literature, and information from local administrations. Geological, geomorphological, and hydro-geochemical surveys were conducted in 300 cases, supported by literature, borehole, and seismic data. A few examples were discarded because they could be ascribed to karst dissolution, volcanic origin (i.e., maar), or anthropogenic causes. Field studies regarding the other 450 cases are in progress. These cases occur along the Tyrrhenian margin (Latium, Abruzzo, Campania, Tuscany) in tectonic, coastal, and alluvial plains close to carbonate ridges. These plains are characterized by the presence of pressurized aquifers in the buried bedrock, overlaid by unconsolidated sediments (i.e., clay, sands, pyroclastic deposits, etc.). The majority of these collapses are aligned along regional master and seismogenetic faults. About 50% of the studied cases host small lakes or ponds, often characterized by highly mineralized springs enriched with CO2 and H2S. The Periadriatic margin does not seem to be affected by these phenomena, and only a few cases have been found in Sicily, Sardinia, and Liguria. The obtained scenarios suggests that this type of collapse could be related to upward erosion through vertical conduits (i.e., deep faults) caused by deep piping processes whose erosive strength is increased by the presence of acidic fluids. In order to distinguish these collapses from typical karst dissolution phenomena, they are defined as deep piping sinkholes (DPS).  相似文献   

2.
Evaporites, including rock salt (halite) and gypsum (or anhydrite), are the most soluble among common rocks; they dissolve readily to form the same types of karst features that commonly are found in limestones and dolomites. Evaporites are present in 32 of the 48 contiguous states in USA, and they underlie about 40% of the land area. Typical evaporite-karst features observed in outcrops include sinkholes, caves, disappearing streams, and springs, whereas other evidence of active evaporite karst includes surface-collapse structures and saline springs or saline plumes that result from salt dissolution. Many evaporites also contain evidence of paleokarst, such as dissolution breccias, breccia pipes, slumped beds, and collapse structures. All these natural karst phenomena can be sources of engineering or environmental problems. Dangerous sinkholes and caves can form rapidly in evaporite rocks, or pre-existing karst features can be reactivated and open up (collapse) under certain hydrologic conditions or when the land is put to new uses. Many karst features also propagate upward through overlying surficial deposits. Human activities also have caused development of evaporite karst, primarily in salt deposits. Boreholes (petroleum tests or solution-mining operations) or underground mines may enable unsaturated water to flow through or against salt deposits, either intentionally or accidentally, thus allowing development of small to large dissolution cavities. If the dissolution cavity is large enough and shallow enough, successive roof failures can cause land subsidence and/or catastrophic collapse. Evaporite karst, natural and human-induced, is far more prevalent than is commonly believed.  相似文献   

3.
Salento, the southern portion of Apulia region (SE Italy), is a narrow and elongated peninsula in carbonate rocks, with prevailing low coastlines, locally interrupted by high rock cliffs. The long stretches of low coasts are marked by typical karst landforms consisting of collapse sinkholes. As observed in many other karst coastal settings worldwide, development of sinkholes may be particularly severe along the coasts, where both natural and anthropogenic processes contribute to accelerate the dissolution of carbonate rocks and subsidence processes, even influencing the coastline evolution. Following a previous study, where the main features of sinkholes at Torre Castiglione (Taranto province) were investigated and described, and a preliminary susceptibility map produced, at the light of updated data and elaborations in the present paper we perform a detailed morphometric analysis on the sample of identified sinkholes. The main morphometric parameters generally used for sinkhole characterization have been considered in this study: shape of the sinkhole, azimuth and length of maximum and minimum axes, depth, elongation ratio, and distance from the shorelines. Each of them is described, both as individual parameter and in conjunction with the others, in the attempt to identify the main factors controlling development of sinkholes in the area, and their evolution as well. With regard to this latter aspect, beside simple morphometry of the sample of sinkholes at Torre Castiglione, we also focused our attention on the likely relationships existing between distribution and shape of the sinkholes and the tectonic discontinuities. To investigate the matter, a three-stage analysis has been carried out in this study by means of: field measurements of the fractures bounding the sinkholes, field measurement of the long axes azimuth of the elongated sinkholes, comparison of the previously described sets with the strikes of the main regional geological structures. The obtained results show, in addition to the coincidence of the main regional discontinuity systems with the major axis of elongated sinkholes, a clear control exerted by development and evolution of the sinkholes on the formation of coastal inlets and bays. Eventually, the approach here presented may be applied in other karst coastal sinkhole-prone areas, to gain new knowledge on the genesis and evolution of coastal sinkholes, and to properly evaluate the hazard they pose to the anthropogenic environment.  相似文献   

4.
The first erosional front of the south‐eastern Alps has been affected by several deep‐seated landslides. The movements affected a Jurassic limestone sequence underlain by an upper Trias unit (Keuper) mainly composed of marl and clays. Horst‐ and graben‐like structures, newly formed gravitational faults, outflow and other field evidence suggest that such movements are consistent with lateral rock spreading processes. An example of such processes is the ‘La Marbrière’ slope, where field investigations have revealed that three distinct zones corresponding to three evolutionary stages of movement exist. The question is: What are the structural and mechanical modifications undergone by the slope between those evolution stages? To tackle this question, numerical models based on a 2D cross section of the ‘La Marbrière’ slope have been performed. Results show that, to fit the structural evidence of the precollapse situation, elasto‐plastic behaviour of the Trias Keuper unit is needed. The transition between the precollapse and fresh post‐collapse situations requires a modification of the mechanical behaviour of the Trias Keuper unit to Burger type, resulting in the formation of antithetic and synthetic gravitational faults (producing a graben‐like structure).  相似文献   

5.
In recent years, new remote-sensed technologies, such as airborne and terrestrial laser scanner, have improved the detail and the quality of topographic information, providing topographical high-resolution and high-quality data over larger areas better than other technologies. A new generation of high-resolution (≤3 m) digital terrain models (DTMs) is now available for different areas and is widely used by researchers, offering new opportunities for the scientific community. These data call for the development of a new generation of methodologies for an objective extraction of geomorphic features, such as channel heads, channel networks, bank geometry, debris-flow channel, debris-flow deposits, scree slope, landslide and erosion scars, etc. A high-resolution DTM is able to detect the divergence/convergence of areas related to unchannelized/channelized processes with better detail than a coarse DTM. In this work, we tested the performance of new methodologies for an objective extraction of geomorphic features related to shallow landsliding processes (landslide crowns), and bank erosion in a complex mountainous terrain. Giving a procedure that automatically recognizes these geomorphic features can offer a strategic tool to map natural hazard and to ease the planning and the assessment of alpine regions. The methodologies proposed are based on the detection of thresholds derived by the statistical analysis of variability of landform curvature. The study was conducted on an area located in the Eastern Italian Alps, where an accurate field survey on shallow landsliding, erosive channelized processes, and a high-quality set of both terrestrial and airborne laser scanner elevation data is available. The analysis was conducted using a high-resolution DTM and different smoothing factors for landform curvature calculation in order to test the most suitable scale of curvature calculation for the recognition of the selected features. The results revealed that (1) curvature calculation is strongly scale-dependent, and an appropriate scale for derivation of the local geometry has to be selected according to the scale of the features to be detected; (2) such approach is useful to automatically detect and highlight the location of shallow slope failures and bank erosion, and it can assist the interpreter/operator to correctly recognize and delineate such phenomena. These results highlight opportunities but also challenges in fully automated methodologies for geomorphic feature extraction and recognition.  相似文献   

6.
The interpretation of DSS (deep seismic soundings) profiles in Central and Eastern Alps is recalled in the paper and the models of the lower crust and Moho proposed several years ago are compared to the results of the TRANSALP seismic reflection profile. This evaluation highlights a good agreement as far as the geometry of the deep crustal structure is concerned. Therefore, the reliability of the interpretative models, previously exclusively based on DSS profiles, becomes improved. The deep structure beneath the whole Alpine range is examined reconsidering the map of the Moho boundary and the structural model already proposed for the central-eastern sector. Five main interpretative transects are put side by side, starting from the Western Alps and moving eastwards to the Swiss–Lombardian Central Alps (“European Geotraverse”), to the cross section from southern Bavaria to the Euganei Hills, to the TRANSALP profile, and finally to the easternmost profile available so far (southern Bavaria–Trieste). The comparison outlines lateral variations of the deep crustal structure as well as a sharp contrast between the Adria and the European lower crust and Moho. The transition from the Adria plate to the Dinaric domain remains, up to now, undefined.  相似文献   

7.
Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170–1,400 mm ky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps today.  相似文献   

8.
 The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an “assimilation region” where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels. Received: 2 May 1995 / Accepted: 1 November 1995  相似文献   

9.
Since the early 1980s, the Dead Sea coast has undergone a near catastrophic land deterioration as a result of a rapid lake-level drop. One conspicuous expression of this deterioration is the formation of sinkholes fields that puncture the coastal plains. The evolution of sinkholes along nearly 70-km strip has brought to a halt the regional development in this well-known and toured area and destroyed existing infrastructures. Great efforts are being invested in understanding the phenomena and in development of monitoring techniques. We report in this paper the application of airborne laser scanning for characterization of sinkholes. We demonstrate first the appropriateness of laser scanning for this task and its ability to provide detailed 3D information on this phenomenon. We describe then an autonomous means for their extraction over large regions and with high level of accuracy. Extraction is followed by their detailed geometric characterization. Using this high-resolution data, we show how sinkholes of 0.5 m radius and 25 cm depth can be detected from airborne platforms as well as the geomorphic features surrounding them. These sinkhole measures account for their embryonic stage, allowing tracking them at an early phase of their creation.  相似文献   

10.
M. Berti  A. Simoni 《Landslides》2005,2(3):171-182
Debris flow initiation by channel bed mobilization is a common process in high mountainous areas. Initiation is more likely to occur at the outlet of small, steeply sloping basins where concentrated overland flow feeds an ephemeral channel incised in slope deposits. Such geological conditions are typical of the Dolomite region (Italian Alps), which is characterized by widespread debris flow activity triggered by severe summer thunderstorms. Real-time data and field observations for one of these catchments (Acquabona catchment, Belluno, Italian Alps) were used to characterize the hydrological response of the initiation area to rainfalls of varying intensity and duration. The observed behaviour was then reproduced by means of a simple hydrological model, based on the kinematic wave assumption, to simulate the generation of channel runoff. The model is capable of predicting the observed hydrological response for a wide range of rainfall impulses, thus providing a physical basis for the understanding of the debris flow triggering threshold.  相似文献   

11.
We present particle size data from 31 samples of carbonate cataclastic rocks collected across the 26 m thick fault core of the Mattinata Fault in the foreland of the Southern Apennines, Italy. Particle size distributions of incoherent samples were determined by a sieving-and-weighting technique. The number of weight-equivalent spherical particles by size is well fitted by a power-law function on a log–log space. Fractal dimensions (D) of particle size distributions are in the 2.091–2.932 range and cluster around the value of 2.5. High D-values pertain to gouge in shear bands reworking the bulk cataclastic rocks of the fault core. Low D-values characterise immature cataclastic breccias. Intermediate D-values are typical of the bulk fault core. Analysis of the ratio between corresponding equivalent particle numbers from differently evolved cataclastic rocks indicates that the development of particle size distributions with D>2.6–2.7 occurred by a preferential relative increase of fine particles rather than a selective decrement of coarse particles. This preferentially occurred in shear bands where intense comminution enhanced by slip localisation progressed by rolling of coarse particles whose consequent smoothing produced a large number of fine particles. Our data suggest that during the progression of cataclasis, the fragmentation mode changed from the Allègre et al.'s [Nature 297 (1982) 47] “pillar of strength” mechanism in the early evolutionary stages, to the Sammis et al.'s [Pure and Applied Geophysics 125 (1987) 777] “constrained comminution” mechanism in the subsequent stages of cataclasis. Eventually, localised shear bands developed mainly by abrasion of coarse particles.  相似文献   

12.
辽河断陷西部凹陷古近系砂岩储层与油气   总被引:23,自引:4,他引:23       下载免费PDF全文
辽河断陷西部凹陷是一个典型的箕状凹陷。受节节下掉正断层的控制,区内在古近系发育了陡坡型和缓坡型两种沉积模式。经过初陷~裂陷、扩张和再陷三个构造~沉积演化期,区内沉积了以源近流短的扇三角洲、湖底扇等为主的粗碎屑砂岩储层。该储层经历压实、胶结和溶蚀等过程,目前主要处于早成岩阶段和晚成岩A期。在沉积和成岩双重控制之下,砂岩储层的孔隙类型以粒间扩大孔隙为主。压实作用损失的孔隙大于胶结作用损失的孔隙。储层在纵向上发育有多个次生孔隙发育带。古近系砂岩储层物性和含油性都以扇三角洲砂岩储层最好,是该凹陷最重要的油气储层。研究认为该区深层具有很大的油气勘探潜力。研究指出了断陷盆地油气的勘探方向。  相似文献   

13.
那拉提-红柳河缝合带是沿西天山构造带展布的哈萨克斯坦-准噶尔板块与塔里木板块间的缝合带,在西天山构造演化中具有举足轻重的地位.沿那拉提-红柳河缝合带分布的区域变质岩和动力变质岩(包括糜棱岩、固结型碎裂岩与未固结型碎裂岩)构成一个完整的演化序列,它们是不同演化阶段(时间),不同演化层次(空间)的产物.根据变质岩的时空演化特点可以看出,自泥盆纪早古南天山洋闭合碰撞之后,西天山构造带仍处在南北挤压应力场中保持强劲上升态势.  相似文献   

14.
The morphological evolution of the karstic systems is associated with a set of physical and chemical processes, triggered by the dissolution of the rocks, related to percolation of groundwater and surface water, which consequently open underground voids and carve out peculiar forms of relief. Due to environmental and geotechnical aspects, this system is naturally more fragile and vulnerable than other natural systems and, therefore, has increasingly received the attention of the scientific community over the past decades. The objective of the study was to delimit zones with varying degrees of susceptibility for collapses and subsidence of sinkholes in the municipality of Iraquara, Chapada Diamantina (BA), Brazil, and to understand their geological and morphological determinant factors. Geological data, karst phenomenon map, and visual analysis in the field were used to categorize zones with different types of susceptibilities to the nucleation of new sinkholes based on a Hazard Index. This index was defined from the sum of geological hazard factors, lineament density, and sinkhole density. The areas that presented the highest susceptibility for terrain collapse and subsidence corresponded to regions where carbonate rocks outcrop, with high density of photolineaments and 2.62 sinkholes/km2. Processes associated with terrain collapse and subsidence in karst areas consisted of a combination of various factors, hindering precise predictions. However, zones of different types of susceptibilities to terrain collapse and subsidence can be delimited when the relationships between these processes and their factors are understood. The Hazard Index proposed does not provide quantitative values for the probability of hazard susceptibility, but rather indicates areas that are more susceptible to terrain subsidence and collapse.  相似文献   

15.
Basic concepts of structural restoration are applied to crustal cross-sections through mountain belts to explore large-scale tectonic models and deep structure. However, restored sections should account for variations in pre-orogenic crustal thicknesses. Crustal balancing approaches are reviewed and applied to two Alpine sections, coinciding with deep seismic experiments: NRP-20 East (Central Alps) and ECORS-CROP (Western Alps). Existing studies assume large (>300 km) orogenic contraction and only moderately thinned pre-orogenic crust. The resulting restored sections contain more crust than is imaged beneath the present-day Alps, the missing crust generally assumed to be subducted. Two kinematic modifications reduce the requirement for subduction: thinning and buoyancy-driven return flow of ultra-high-pressure metamorphic rocks during orogenesis; and pre-orogenic hyperextension. Using large stretching factors for the pre-orogenic crust negates crustal subduction on both Alpine transects. If the lower crust was approximately rigid, restorations of the Central Alps require strongly depth-heterogeneous stretching of upper and lower crust during Mesozoic rifting. Relaxing this requirement allows uniform lithospheric stretching, a corollary consistent with published subsidence estimates. Restorations make implicit statements on the form of pre-orogenic basins and the structure of continental margins incorporated into mountain belts that can in turn provide tests of tectonic models.  相似文献   

16.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


17.
A detailed meso- and microscopic structural investigation of a laminated manganiferous meta-chert from the Western Italian Alps has resulted in the recognition of five deformation phases. During the third phase large subhorizontal shear movements took place, resulting in reorientation of pre-existing structures and sheath-fold formation. This was accompanied by a decrease in pressure, reflected by the zoning of blue-amphiboles and by microboudinage and the formation of stretching cracks in minerals. The orientation of amphiboles, together with some evidence from quartz c-axis fabrics suggest that the deformation took place by simple shear. During the late stages of sheath-fold formation the deformation became non-rotational.  相似文献   

18.
Metapelites from the southern aureole of the Vedrette di Ries tonalite (eastern Alps) were variably overprinted by contact and earlier regional metamorphic events during pre-Alpine and Alpine metamorphic cycles. In these rocks, starting from a primary garnet mica-schist (garnet stage), a complex sequence of transformations, affecting the site of the garnet, has been recognized. In the outermost part of the aureole, the primary garnet sites are occupied by nodules of kyanite (kyanite stage). Closer to the tonalite, kyanite is replaced by staurolite (staurolite stage), which in turn is pseudomorphed by muscovite (muscovite stage). The aggregates of kyanite do not overgrow garnet directly; they post-date a stage (fibrolite stage) represented by the pseudomorphic alteration of garnet into fibrolitic sillimanite plus biotite. A further sericite stage is likely to have occurred between the fibrolite and kyanite stages. Preservation of the sub-spherical garnet shape during all these transformations and persistence of mineralogical and textural relicts from earlier stages were favoured by the very low strain experienced by the rocks since the garnet stage. The textural sequence is in agreement with the metamorphic history of this part of the Austroalpine basement of the Eastern Alps: the garnet and fibrolite stages, and the coeval main foliation of the samples, are referred to the high-grade Hercynian metamorphism; the kyanite stage to the Eo-Alpine metamorphism; the staurolite and muscovite stages to the Oligocene contact metamorphism. It is suggested that kyanite growth as microgranular aggregates took place in polymetamorphic rocks where static, high- P /low- T  metamorphism overprinted high- T  assemblages that contained sillimanite or andalusite.  相似文献   

19.
The Sesia zone (Italian Western Alps) offers one of the best preserved examples of pre-Alpine basement reactivated, under eclogite facies conditions, during the Alpine orogenesis. A detailed mineralogical study of eclogitized acid and basic granulites, and related amphibolites, is presented. In these rare weak to undeformed rocks microstructural investigations allow three main metamorphic stages to be distinguished.
(a) A medium- to low- P granulite stage giving rise to the development of orthopyroxene + garnet + plagioclase + brown amphibole + ilmenite ± biotite in basic granulites and garnet + K-feldspar + plagioclase + cordierite + sillimanite + biotite + ilmenite in acid granulites.
(b) A post-granulite re-equilibration, associated with the development of shear zones, producing discrete amphibolitization of the basic granulites and widespread development of biotite + sillimanite + cordierite + spinel in the acid rocks.
(c) An eo-Alpine eclogite stage giving rise to the crystallization of high- P and low- T assemblages.
In an effort to quantify this evolution, independent well-calibrated thermobarometers were applied to basic and acid rocks. For the granulite event, P-T estimates are 7–9 kbar and 700–800° C, and for subsequent retrograde evolution, P-T was 4–5 kbar and 600° C. For the eo-Alpine eclogite metamorphism, pressure and temperature conditions were 14–16 kbar and 550° C.
The inferred P-T path is consistent with an uplift of continental crust produced by crustal thinning prior to the subduction of the continental rocks. In the light of the available geochronological constraints we propose to relate the pre-Alpine granulite and post-granulite retrograde evolution to the Permo-Jurassic extensional regime. The complex granulite-eclogite transition is thus regarded as a record of the opening and of the closure of the Piedmont ocean.  相似文献   

20.
More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号