首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
High residual pore pressure observed in the vicinity of piles driven in saturated soil indicates that the soil around the pile may be liquefied. In the present paper, the problem of deformation of saturated sand around a vibrating pile is formulated with the use of a high-cycle accumulation model capable of describing a large number of cycles. The problem is solved numerically for locally undrained conditions in spherically symmetric formulation suitable for the lower part of a cylindrical closed-ended pile near the toe. The aim of the study is to calculate the evolution of the liquefaction zone around the pile for a large number of cycles. A parametric study is carried out to show how the growth of the liquefaction zone depends on the pile displacement amplitude, the relative soil density, the effective stress in the far field and the pore fluid compressibility.  相似文献   

2.
In this paper, a numerical procedure based on the finite element method is outlined to investigate pile behaviour in sloping ground, which involves two main steps. First a free-field ground response analysis is carried out using an effective stress based stress path model to obtain the ground displacements, and the degraded soil stiffness and strength over the depth of the soil deposit. Next a dynamic analysis is carried out for the pile. The interaction coefficients and ultimate lateral pressure of soil at the pile–soil interface are calculated using degraded soil stiffness and strength due to build-up of pore pressures, and the soil in the far field is represented by the displacements calculated from the free-field ground response analysis. Pore pressure generation and liquefaction strength of the soil predicted by the stress path model used in the free-field ground response analysis are compared with a series of simple shear tests performed on loose sand with and without an initial static shear stress simulating sloping and level ground conditions, respectively. Also the numerical procedure utilised for the analysis of pile behaviour has been verified using centrifuge data, where soil liquefaction has been observed in laterally spreading sloping ground. It is demonstrated that the new method gives good estimate of pile behaviour, despite its relative simplicity.  相似文献   

3.
熊辉  杨丰 《岩土力学》2020,41(1):103-110
在桩基顶部承受竖向荷载作用的条件下,将完全液化后的上层土体视为流体,将桩基等效为欧拉-伯努利梁模型,探讨了桩底嵌固时桩基顶部的水平振动阻抗。运用流体动力方程模拟顶部液化土层的运动,运用文克尔地基模拟下部非液化分层土的运动。结合传递矩阵法,利用液化土与非液化分层土交界面处的位移、转角和内力连续条件,得到桩基顶部和底部的相关位移?内力表达关系式。根据桩基底部的嵌固条件,求得桩顶阻抗的表达式。与已有文献解进行对比,验证了分析过程的正确性。对阻抗影响条件进行参数分析,表明液化深度、轴力和流体密度大小对桩顶阻抗有不同的影响。  相似文献   

4.
Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss simplified method have been developed over the years. Although simplified methods are available in calculating the liquefaction potential of a soil deposit and shear stresses induced at any point in the ground due to earthquake loading, these methods cannot be applied to all earthquakes with the same accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria, a zone of the corridor of Tabriz urban railway line 2 susceptible to liquefaction was recognized. Then, using numerical analysis and cyclic stress method using QUAKE/W finite element code, soil liquefaction potential in susceptible zone was evaluated based on design earthquake.  相似文献   

5.
杨耀辉  陈育民  刘汉龙  李文闻  江强 《岩土力学》2018,39(11):4025-4032
排水刚性桩是一种将竖向排水体与刚性桩相结合的新型抗液化处理措施。为研究排水刚性桩群桩的抗液化作用效果,开展了桩顶竖向荷载作用下排水刚性桩处理可液化地基的振动台试验研究,分析了地基土体的超孔压响应、加速度响应及桩顶结构的水平位移响应,并与未设置排水体的普通桩群桩工况进行对比。结果表明:加载开始后,排水桩桩身排水通道有大量超孔隙水排出,普通桩桩身没有排水现象。采用排水桩时超孔压比峰值比普通桩中减小12%,孔压消散稳定后超孔压比减小13%左右,排水桩桩身的排水通道对超孔压的消散作用集中在振动作用的前期。排水桩桩顶的侧向永久位移较普通桩桩顶侧向永久位移减小约27%。试样土体液化前,剪应力-应变滞回圈包络面积较大,土体呈现一定的剪胀特性。液化后,排水桩的剪应力-应变滞回圈的割线模量更大。上述试验结果均表明了排水刚性桩在抗液化方面的有效作用。  相似文献   

6.
可液化场地微型桩的地震响应分析是确保工程安全和优化抗震设计的前提。应用动态离心机试验和三维有效应力数值分析方法,研究了微型单桩桩台的侧向变形和加速度、不同埋深桩身弯矩、可液化场地的加速度及超孔隙水压力等响应特征。首先开展了相对密实度为57%饱和土层、输入波是频率为1 Hz和峰值加速度为1.516 m/s2正弦波的微型桩40 g动态地震响应离心机试验,进而应用基于多重剪切机构塑性模型和液化前缘状态面概念的三维有效应力分析方法,反演了试验结果,并进行了对比分析,结果表明,数值模拟与离心机试验结果吻合,液化场地特性控制着建于其中微型桩的地震响应特征,微型桩桩台的水平变形和残余变形可达78、30 mm,桩身最大弯矩和最大残余弯矩呈现向桩身底部迁移特点,同时表明,基于动态土工离心机试验和数值分析相结合的研究方法,分析可液化场地微型桩地震响应特性是有效可行的,研究结论为可液化场地微型桩的抗震设计提供了可靠的依据和参考。  相似文献   

7.
Seismic response of pile foundations in liquefiable soil: parametric study   总被引:2,自引:1,他引:1  
The performance of pile foundations in liquefiable soil subjected to earthquake loading is a very complex process. The strength and stiffness of the soil decrease due to the increase in pore pressure. The pile can be seriously destroyed by the soil liquefaction during strong earthquakes. This paper presents the response of vertical piles in liquefiable soil under seismic loads. A finite difference model, known as fast Lagrangian analysis of continua, is used to study the pile behavior considering a nonlinear constitutive model for soil liquefaction and pile?Csoil interaction. The maximum lateral displacement and maximum pile bending moment are obtained for different pile diameters, earthquake predominant frequencies, Arias intensities, and peak accelerations. It is found that the maximum lateral displacement and the maximum pile bending moment increase when the predominant earthquake frequency value decreases for a given peak acceleration value.  相似文献   

8.
A new method for calculation of head displacement and rotation of laterally loaded rigid monopiles and poles in multilayered heterogeneous elastic soil is presented. The analysis considers the soil as a layered elastic continuum in which the modulus vary linearly with depth within each layer. Rational pile and soil displacement fields are assumed, and the interaction between the pile and soil is taken into account by using the principle of virtual work. Two sets of equilibrium equations, one describing the pile displacement and rotation and the other describing the displacements in the soil, are obtained and solved analytically and numerically following an iterative algorithm. The new method produces pile responses as accurate as those obtained from three-dimensional finite element analysis but does not require any elaborate input for geometry and mesh.  相似文献   

9.
海底缓坡场地地震侧移数值分析方法   总被引:2,自引:0,他引:2  
邵广彪  冯启民  王华娟 《岩土力学》2006,27(9):1601-1606
地震动使海底倾斜土层软化、液化并产生永久变形和位移。基于有限元理论,提出一种海底缓坡场地地震引起水平侧移的数值计算方法,将波浪荷载简化为恒定压力荷载和初始孔压,采用二维有效应力动力有限元分析方法进行液化分析,同时由模量软化理论得到土层在地震动各时段的模量,通过非线性静力方法计算软化、液化引起的水平侧移。由算例分析了土层坡度、液化层及上覆非液化层厚度、波浪荷载等因素对侧移的影响,通过对比分析表明了该方法的有效性,可为近海工程场地地震地质灾害评价提供参考数据。  相似文献   

10.
Field studies have shown that the driving of a displacement pile into cohesive soil generates large excess pore pressures in the vicinity of the pile. These pore pressures are often larger than the effective overburden pressure and facilitate the installation of the pile. The subsequent increase in bearing capacity of the pile is largely controlled by the dissipation of the excess pore pressures and a consequent increase in the effective stresses acting on the pile. The paper presents a closed formanalytical solution for the radial consolidation of the soil around a driven pile, assuming that the soil skeleton deforms elastically. This assumption is examined in the light of the predicted effective stress changes in the soil and is shown to lead to, a realistic model for the decay of pore pressure near the pile with time after driving. Although the solution may be applied to any initial distribution of excess pore pressure, attention is focussed on that due to the expansion of a cylindrical cavity in an ideal elastic, perfectly plastic soil. The resulting logarithmic variation of excess pore pressure with radius is considered to be close to that generated around a pile as a result of driving. In addition to giving estimates of the time needed for a driven pile to achieve its maximum strength, the solution may also be used in the analysis of pressuremeter tests to provide in-situ measurements of the coefficient of consolidation of the soil.  相似文献   

11.
An analysis of a pile vertical response considering soil inhomogeneity in the radial direction under dynamic loads is presented. The solution technique is based on a three‐dimensional axisymmetric model, which includes the consideration of the vertical displacement of the soil. The soil domain is subdivided into a number of annular vertical zones, and the continuity of the displacements and stresses are imposed at both the interface of pile–soil and the interfaces of adjacent soil zones to establish the dynamic equilibrium equations of the pile–soil interaction. Then, the equations of each soil zone and of the pile are solved one by one to obtain the analytical and semi‐analytical dynamic responses at the top of the pile in the frequency domain and time domain. Parametric studies have been performed to examine the influence of soil parameters' variations in the radial direction caused by the construction effect on the dynamic responses of pile. The results of the studies have been summarized and presented in figures to illustrate the influences of the soil parameters as they change radially. The effect of the radius of the disturbed soil zone caused by construction is also studied in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
曾晨  孙宏磊  蔡袁强 《岩土力学》2014,35(4):1147-1156
研究了全空间饱和土体中圆形衬砌隧道在径向简谐点荷载作用下的三维动力响应,将衬砌用无限长圆柱壳来模拟,土体用Biot饱和多孔介质模型来模拟,引入两类势函数来表示土骨架的位移和孔隙水压力,并利用修正Bessel方程来求解各势函数,结合边界条件,得到频率-波数域内衬砌和土骨架位移、孔隙水压力的解答,最后进行Fourier逆变换得到时间-空间域内的响应。通过算例分析了荷载振动频率和土体渗透性对土体和衬砌位移响应及土体孔压的影响。结果表明,饱和土体和弹性土体的位移响应具有明显区别。随着荷载频率的增大,土体和隧道位移幅值减小,土体孔压幅值增大;随着土体渗透性增大,土体位移及孔压幅值减小。  相似文献   

13.
A series of centrifuge shaking table model tests are conducted on 4?×?4 pile groups in liquefiable ground in this study, achieving horizontal–vertical bidirectional shaking in centrifuge tests on piles for the first time. The dynamic distribution of forces on piles within the pile groups is analysed, showing the internal piles to be subjected to greater bending moment compared with external piles, the mechanism of which is discussed. The roles of superstructure–pile inertial interaction and soil–pile kinematic interaction in the seismic response of the piles within the pile groups are investigated through cross-correlation analysis between pile bending moment, soil displacement, and structure acceleration time histories and by comparing the test results on pile groups with and without superstructures. Soil–pile kinematic interaction is shown to have a dominant effect on the seismic response of pile groups in liquefiable ground. Comparison of the pile response in two tests with and without vertical input ground motion shows that the vertical ground motion does not significantly influence the pile bending moment in liquefiable ground, as the dynamic vertical total stress increment is mainly carried by the excess pore water pressure. The influence of previous liquefaction history during a sequence of seismic events is also analysed, suggesting that liquefaction history could in certain cases lead to an increase in liquefaction susceptibility of sand and also an increase in dynamic forces on the piles.  相似文献   

14.
The results of field structural studies of the Tuapse shear zone in the Northwest Caucasus are presented. This zone is characterized by shear displacements of various scales with a dominant horizontal shear, viz., a geodynamic type of the stress state, which leads to the formation of faults with mostly lateral displacement of wings, i.e., along the strike of the fault surface. The quantitative characteristics of the local stress conditions in the shear zone (the positions of principal axes and the Lode–Nadai coefficient) are determined on the basis of cataclastic analysis and geological indicators of the paleostresses. The differences between these characteristics are considered for the large tectonic zones. Significant spatial (areal) variations in orientations of the axes of major normal stresses in the shear zone and their local weak gentle variations are evidence of a consistent general stress direction during the formation of faults during the Late Eocene–Miocene deformation epoch.  相似文献   

15.
白顺果  侯永峰  张鸿儒  李志强 《岩土力学》2006,27(Z1):1017-1020
设计并完成了循环荷载作用下水泥土桩复合地基的模型试验。对水泥土桩复合地基的竖向附加应力、桩土应力比、孔隙水压力及沉降等问题进行了研究讨论。结果表明,(1)水泥土桩加固饱和软基后发生了应力重分布;(2)循环荷载作用下复合地基桩土应力比受加荷周数、循环应力比和置换率等因素的影响较显著;(3)水泥土桩加固饱和软基降低了孔压值,减小了由于孔隙水压力的消散而产生的工后沉降;(4)水泥土桩复合地基在循环荷载作用下桩顶和桩间土变形并不协调,桩顶永久沉降小于桩间土永久沉降,且加荷周数越大这种趋势越显著。  相似文献   

16.
孙晓东 《探矿工程》2012,39(12):50-53
桩贯入土体产生的挤土效应问题较为复杂。利用ABAQUS软件建立了单桩贯入夹硬层土和均质土的二维轴对称有限元模型,经过分析比较,得出了单桩贯入夹硬层土体所特有的位移场及应力场的变化规律。分析表明:桩贯入夹硬层土过程中,软硬土层交界处土体水平位移变化剧烈;硬土层的存在,会使土体水平及竖向位移受到约束;夹硬层土的水平挤压应力要远大于均质土情况;与水平应力相比,竖向挤压应力在硬土层处明显偏小。  相似文献   

17.
This paper investigates the soil displacements and excess pore pressures induced by driven piles using a combined 3D finite and infinite element approach. The analyses are compared with analytical evaluations and field measurements. Consolidation analysis is conducted to illustrate the variation in pore pressure with time. A technique of drilling drainage holes on the pipe pile is proposed in this paper to accelerate the dissipation of pore pressure to improve the performance of displacement piles. It has been noticed that optimal performance of piles can be obtained by assigning openings in piles within the bottom 50% of the pile length.  相似文献   

18.
周凤玺  赖远明 《岩土力学》2013,34(6):1723-1730
根据Biot波动理论,研究了条形均布荷载作用下非均匀饱和土地基的动力响应问题。利用Fourier积分变换,通过Helmholtz矢量分解原理,建立了饱和土层在动荷载作用下的回传射线矩阵法计算列式,考虑饱和土的物理力学性质沿深度方向按幂函数连续变化,采用数值Fourier逆变换获得了饱和土地基的位移、应力和孔隙压力等物理量的数值解。分析讨论了材料非均匀性对饱和土介质动力特性的影响。结果表明,非均匀饱和土的动力行为与均匀饱和土有着明显的不同,当土体的非均匀程度越高,条形荷载中点下流体压力和应力幅值越大,而位移、流体压力以及应力等物理量在水平方向的振动频率均随着土体非均匀变化程度的增强而增大。  相似文献   

19.
ABSTRACT

Short stubby piles like monopiles and large diameter drilled shafts undergo rigid body translation and rotation when subjected to a lateral force and/or a moment at the head. A method of analysis for these piles embedded in multi-layered elastic soil is developed using the variational principles of mechanics. Using this analysis, the soil resistance against pile movement can be rigorously related to the soil elastic constants, and the pile head displacement and rotation can be quickly calculated. The equilibrium equations for pile and soil displacements are obtained using the principle of virtual work and solved using an iterative algorithm. Pile responses obtained from the analysis match well with those obtained from three-dimensional finite element analyses in which the same inputs of loads, geometry, and material properties are given. Based on the new analysis, fitted equations for soil resistance parameters are developed, which can be used to directly calculate the pile head displacement and rotation without the use of the iterative algorithm. Numerical examples are provided that demonstrate how the method can be used to analyse practical problems.  相似文献   

20.
横向载荷作用下刚性桩变位规律研究   总被引:1,自引:0,他引:1  
崔新壮  丁桦  金青  李术才 《岩土力学》2006,27(7):1092-1096
目前对横向受载刚性桩的研究主要集中在其承载力方面,对变化规律研究很少。为此提出了利用刚性桩上两点位移求桩上任意一点位移、桩回转中心位置及转角的方法。通过对粉质黏土中的刚性桩进行模型试验与数值计算发现,回转中心位置随位移和载荷的增大,先是急剧下降,然后变缓,最后基本趋于稳定,而且桩埋置参数与土力学参数对回转中心位置的变化规律影响很小;而桩的转角随位移增大近似线性变化。比较发现,由试验和数值计算得到的回转中心极限位置与由极限地基反力法得到的结果相差不大  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号