首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

2.
Backscatter cross-sections of microwaves from the sea surface are calculated by using the facet model and are compared withJonswap '75 experimental results. The principal features obtained are: (1) asymmetry of backscatter cross-sections between upwind and downwind directions is attributable to the modulation of the short gravity-capillary wave spectrum by a larger wave, and the non-Gaussian wave slope distribution has a tendency to cancel this effect, (2) angular spreading of the energy spectrum in the higher frequency range should have a narrower band than a simple cosine distribution, (3) the facet model itself should begin to break down at a larger incident angle than previously supposed.  相似文献   

3.
Two-dimensional ocean wave spectrum developing under the atmospheric surface pressure fluctuations is linearly correlated with that of wind pressure itself, so that angular distribution of energy of ocean surface waves can be determined by directional properties of surface pressure fluctuations with the same frequency to the surface wave.From empirically determined spectral formula of the atmospheric surface pressure fluctuations the coefficients of Fourier series expanded around mean direction of wind are analytically integrated, from which r.m.s. angular distribution, spectral peakedness and long-crestedness are calculated, compared with previously proposed empirical formulae and observations carried out by ultrasonic current meter.  相似文献   

4.
In contrast with the usual method to obtain the wind-wave directional spectrum by multiplying the frequency spectrum with an empirical directional function, the authors attempt to derive analytically the directional spectrum by adopting proper spectral form and using effective parameters, namely, the zero order momentm 0 of the wind-wave frequency spectrumS(), its peak frequency 0 and the so-called peakness factorP=0 S(0)/m 0, where is angular frequency. The directional spectrum is given in a form of frequency spectrum for each direction. The spectral directionality depends on, in addition to frequency, the wind-wave growth status, for the peakness factorP as introduced by the authors previously is a measure of the wave development stage. The salient features of the directional spectrum, comparison with existing formulas and the verification of the spectrum by observational data are to be given in the Part 2 of the paper.Project supported by the National Natural Science Foundation of China.  相似文献   

5.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

6.
This paper presents the results of observation on the development of wind-waves which were generated in a lake water about 420 cm deep with a fetch 12 km long. Measurements of surface elevation were carried out at the end of an observational pier where the water depth was 80 cm. The wave momentum flux, i.e., the growth rate of the wave momentum, was estimated from both significant waves and power spectral densities for the wave records. The values obtained by the two ways accorded fairly well and they were 57 % as large as the wind stress measured simultaneously. The exponential growth rate of spectral densities for a frequency component was in good accord with that observed bySnyder andCox (1966) and by others. If these growth rates are applied to all the components of the spectrum, the wave momentum flux must exceed the wind stress. This cannot explain the experimental results nor can be physically accepted. The difference of spectral densities between the two successive runs showed that the increase of spectral densities was. limited in several bands of frequency. The phenomena are discussed in relation with the overshoot-undershoot effects studied byBarnett andSutherland (1968).Observational results suggest that the spectral growth of a certain component is closely related to the spectral densities of other components. Energy exchange among componented waves has not been considered in the theories for generation and development of wind-waves established by Phillips, Miles and others.New generation mechanism suggested byLonguet-Higgins (1969) was found to be able to describe the observed growth rates of the form(f)={(1/2)(t–t1/2)}2: the spectral density(f) was proportional to the square of durationt. However, the mechanism can not explain the overshoot-undershoot effects peculiar to the equilibrium spectrum of windwaves.Three frequencies characterizing the discrete distributions of frequency bands where spectral densities increased were examined and three waves corresponding to these frequencies were found to be satisfying the resonance conditions for the wave-wave interactions among three sinusoidal wave trains as studied byPhillips (1960),Longuet-Higgins (1962) andBenny (1962). The interactions are suggested to predict well both the spectral growth proportional to squares of duration and the ceaseless oscillations of spectral densities in an equilibrium spectrum.  相似文献   

7.
Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spect  相似文献   

8.
Wave dissipation characteristics in SWAN (Simulating Waves Nearshore) model are investigated through numerical experiments. It is found that neither the fully developed integral parameters of wind waves (significant wave height and peak frequency) nor the high frequency spectral tail can be well reproduced by the default wave dissipation source terms. A new spectral dissipation source term is proposed, which comprises saturation based dissipation above two times of peak frequency and improved whitecapping dissipation at lower frequency spectrum. The reciprocal wave age (u /c p ) is involved into the whitecapping model to adjust dissipation rate at different wind speed. The Phillips higher frequency saturation parameter in the saturation-based dissipation is no longer taken as a constant, but varies with wave age. Numerical validations demonstrate that both the wind wave generation process and higher frequency spectrum of wind waves can be well simulated by the new wave dissipation term.  相似文献   

9.
Analysis is made of wind and wave data, which were obtained during the passage of Typhoon 8013 at an Ocean Data Buoy Station south of Honshu operated by the Japan Meteorological Agency, in order to investigate the wave dependence of sea-surface roughness parameter in the situation where wind waves are dominant with less significant swells. The data fit better the wave-dependent expression of the wind stress,z 0 p/u*=, than to Charnock's formula,gz 0/u*2=, wherez 0 is the roughness length, p the angular frequency of the spectral peak of wind waves,u* the friction velocity of air,g the acceleration of gravity, and are non-dimensional constants. The results are very similar to those of our previous study using data from an oil producing platform in the Bass Strait, Australia, although the type of observation system and the synoptic situation of the winds and wind waves were totally different.  相似文献   

10.
The development process of wind-waves of which spectral peak distributes from 0.6 cps to 9.3 cps will be discussed on the basis of the wind tunnel experiments and of the field observations performed at Lake Biwa. The characteristics of power and slope spectra are here presented. The development process of these wind-waves is characterized by three stages;i.e. initial-wavelets, transition stage and sea-waves. In the wind tunnel experiments, the transition from the stage of the initial-wavelets to the transition stage occurs when the wave spectral peak arrives at the line 6.40×10–4 k –2cm2·sec (wherek is wave number) or when the slope spectral density at the frequencyf max becomes larger than 6.40×10–4 sec. In the stage of sea-waves, the component wave of a wave-spectral peak is steepest in the component waves. And the wave spectral peak develops along the line 1.02×102 f –6 cm2·sec (wheref is the frequency corresponding to the wave numberk) untill it reaches the line 33.3f –4cm2·sec, and thereafter develops along the latter line, which indicates the constant density of slope spectrum. It is suggested that the nonlinearity of wind-waves must become stronger as wind-waves develop. The effective momentum flux ws from the air flow to wind-waves in this stage is evaluated to be about 49% of the total stress 0.  相似文献   

11.
We compare the results obtained by using theoretical and semiempirical models developed for the evaluation of the dissipation rate of turbulent energy in a stratified ocean with independent distribution of this quantity established by the authors for the active layer of the Black Sea (50–300 m) by using a one-dimensional model taking into account the balance of heat, salt, and fluid inside the layer. It is shown that, in a layer with gradual variation of the Väisälä–Brunt frequency N as a function of depth, the predominant sink of the energy of motion into dissipation N 2 is ensured by the flow of energy through the spectrum of internal waves toward low frequencies and small vertical scales. On the contrary, in layers with abrupt drops of density as a function of depth (layers with jumps of density), an important role is played by the interface-type waves and the dependence of on N transforms into N .  相似文献   

12.
The wave-wave kinetic equation for surface gravity waves in a deep sea is solved numerically, using the Runge-Kutta technique. Spectral evolution of waves resulted only from their being non-linear, with no wave generation and decaying taking place. To perform computations the JONSWAP-type frequency spectra and a variety of angular wave spectra were used. The angular spectrum of waves turned out to be stable. The frequency spectrum differed from the JONSWAP spectrum in that it had a high-frequency part, which was not similar to the Phillips spectrum. The form of the high-frequency spectral slope was determined as a result of spectral evolution and proved to have the form of the ‘−6’ law. Translated by Vladimir A. Puchkin.  相似文献   

13.
Wind-wave spectra measured in a wind-flume are analyzed according to the hypothesis of local equilibrium. The gross relation between the wave height and the frequency is reexamined to yield the basic validity of the 3/2-power law of Toba orE~? in the range of 0.4≦?≦1, where? is the wave-wind parameter defined by?=ω p u */g; ω p denotes the peak frequency of the wind-wave spectra,u * the friction velocity andg the gravitational acceleration. Noticeable deviation is found, however, for?<0.4 or?>1. In particular, the data for large? suggest the existence of an upper limit of the wave nonlinearityE at about 5×10?2, whereE=Eω p 4 /g2 withE the total power of the wind wave spectrum. Then, the spectral form is investigated in detail. As? decreases, the normalized spectrum becomes more gradual as a whole, but its forward (low frequency) part tends to show a steeper profile. In the high frequency region ( \(\tilde \omega \) >2.6), the spectrum is found to have a functional form likeu * 2 ω ?3, which differs from the usualω-dependence asω ?5 orω ?4. It suggests weak dependence of the high-frequency spectra on the gravitational accelerationg and on the peak frequencyω p ; spectral density at high frequencies may be saturated, so that its magnitude may be dominated by the frequencyω, the friction velocityu *, the surface tension and the viscosity.  相似文献   

14.
Acoustic scattering of a plane wave incident upon a rough surface over a transition fluid layer within which both the density and sound speed vary with depth is considered. A theory based upon a boundary perturbation method has been applied to a typical seabed environment to study the power spectral density representing the energy distribution of the scattered field over the space. The effects of frequency and roughness properties, including the roughness height, spatial correlation, and power spectrum, on the power spectral density have been investigated. The results demonstrate that the power spectral density of the scattered field depends upon all the aforementioned parameters, particularly the correlation length and the power spectrum of the rough surface, a conclusion in distinct contrast to the results for the coherent field obtained in an earlier study. It was found that the constituents of the rough surface such as the correlation length and wavenumber spectrum dominate the angular distribution of the scattered energy. These results indicate that it is crucial to employ a suitable topological model in the study of rough seabed scattering.  相似文献   

15.
Numerical Study of Two-Dimensional Focusing Waves   总被引:6,自引:3,他引:3  
Two-dimensional focusing waves are generated and investigated by numerical method. The numerical model is developed by introducing the wave maker boundary on the high-order spectral (HOS) method proposed by Dommermuth and Yue in 1987 and verified by theoretical and experimental data. Some cases of focusing waves considering different parameters such as assumed focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum are generated. Characteristics of the focusing wave including surface elevations, the maximum crest, shift of focusing points and frequency spectra are discussed. The results show that the focusing wave characteristics are strongly affected by focusing amplitudes, frequency bandwidth, central frequency and frequency spectrum.  相似文献   

16.
This paper proposes the following generalized representation for a wind-wave frequency spectrum:
where E = ∫S(f)df is the variance of the surface displacement; fm is the frequency of the spectral peak; and Ci's, i = 1,2,3, are dimensionless parameters that can be determined from the internal spectral parameters of a given spectrum.When applied to 234 sets of wave spectra recorded in the Great Lakes, this representation has been realistic, accurate, and capable of representing widely varied wave processes. The Ci's are clearly related to wave growth processes; they are large during early growth, decrease as waves grow, and reach approximate equilibrium when waves are fully developed.  相似文献   

17.
Observational data on air-sea boundary processes at the Shirahama Oceanographic Tower Station, Kyoto University, obtained in November, 1969, was analyzed and presented as an example representing the structure of growing wind-wave field. The condition was an ideal onshore wind, and the data contained continuous records of the wind speed at four heights, the wind direction, the air and water temperatures, the tides, and the growing wind waves, for more than six hours. The main results are as follows. Firstly, in both of the wind speed and the sea surface wind stress, rather conspicuous variations of about six-minute period were appreciable. Secondly, the three-seconds power law and its lemma expressed byH *=BT *3/2 and=2BT *–1/2, respectively, are very well supported by the data, whereH *(gH/u * 2) andT *(gT/u *) are the dimensionless significant wave height and period, respectively, the wave steepness,u * the friction velocity of air,g the acceleration of gravity, andB=0.062 is a universal constant. Thirdly, the spectral form for the high-frequency side of the spectral maximum is well expressed by the form of()= sgu*–4, where is the angular frequency and() the spectral density. The value of s is determined as 0.062±0.010 from the observational data. There is a conspicuous discrepancy between the spectral shape of wind waves obtained in wind-wave tunnels and those in the sea, the former containing well-defined higher harmonics of the spectral peak, and consequently there is an apparent difference in the values of s also. However, it is shown that the discrepancy of s may be eliminated by evaluating properly the energy level of the spectral form containing higher harmonics.  相似文献   

18.
The existence of a transition in the slope of the wind-generated gravity wave spectrum from a f−4 to a f−5 power law, at a given frequency in the high frequency range, is examined. Evidence of its existence and of the non-uniqueness of the wave spectrum slope in the equilibrium range is presented. Furthermore, it is demonstrated that the statistical variability of the spectral estimates makes it difficult to obtain reliable results from limited sets of finite length wave records.  相似文献   

19.
In this paper, it is held that the universal relationships of wave growth in fetch-limited conditions , i. e.,(f|~) p=A(x|~)-Band (m|~)0= C(x|~) Dshould satisfy the Toba 3/2 power law and the wave energy balance equation. In the ideal generation situation, theoretically it can be derived that the ideal fetch-limited wave growth relationship should have D=3B and D B =1, (i.e., B = 0.25, D = 0.75 ) and A3C=2. 1×l(T4C~(1/2)_d , where Cd is the drag coefficient. The 3/2 power law, the wave energy balance equation and the decrease of wave steepness with increasing fetch have became three requirements which should be satisfied by fetch-limited wave growth algorithms. A semi-empirical and semi-theoretical model for fetch-limited wave growth is presented. In the application to the slanting wind situation an un(?)ersal relationship of dimensionless wave energy vs dimensionless peak frequency is presented and the comparisons show that the model is in good agreement with observations.  相似文献   

20.
The wind speeds and significant wave heights observed by the TOPEX altimeter during the first 30 repeat cycles (for about 10 months) are validated by comparing with the data obtained at Japanese Ocean Data Buoy stations. The values of Kuband 0 observed by the altimeter show good agreement with those estimated from the buoy wind speed using the modified Chelton-Wentz algorithm. The wind speeds derived from the Ku-band 0 using the algorithm agree well with the buoy data with an rms difference of 1.99 ms–1. The significant wave heights observed by the altimeter have a systematic bias of 0.3 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号