首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microseismicity and faulting geometry in the Gulf of Corinth (Greece)   总被引:7,自引:0,他引:7  
During the summer of 1993, a network of seismological stations was installed over a period of 7 weeks around the eastern Gulf of Corinth where a sequence of strong earthquakes occurred during 1981. Seismicity lies between the Alepohori fault dipping north and the Kaparelli fault dipping south and is related to both of these antithetic faults. Focal mechanisms show normal faulting with the active fault plane dipping at about 45° for both faults. The aftershocks of the 1981 earthquake sequence recorded by King et al . (1985 ) were processed again and show similar results. In contrast, the observations collected near the western end of the Gulf of Corinth during an experiment conducted in 1991 ( Rigo et al . 1996 ), and during the aftershock studies of the 1992 Galaxidi and the 1995 Aigion earthquakes ( Hatzfeld et al . 1996 ; Bernard et al . 1997 ) show seismicity dipping at a very low angle (about 15°) northwards and normal faulting mechanisms with the active fault plane dipping northwards at about 30°. We suggest that the 8–12 km deep seismicity in the west is probably related to the seismic–aseismic transition and not to a possible almost horizontal active fault dipping north as previously proposed. The difference in the seismicity and focal mechanisms between east and west of the Gulf could be related to the difference in the recent extension rate between the western Gulf of Corinth and the eastern Gulf of Corinth, which rotated the faults dipping originally at 45° (as in the east of the Gulf) to 30° (as in the west of the Gulf).  相似文献   

2.
The Gulf of Aqaba earthquake swarm of 1983 January-April   总被引:2,自引:0,他引:2  
Summary. In the period 1983 January 21 -April 20, more than 500 local earthquakes ( M L≤ 4.85) occurred in the Gulf of Aqaba area between latitudes 29°00'and 29°25'and longitudes 34°30'and 34°45'. Most of the activity including the largest shocks was restricted to the area between latitudes 29°07'and 29° 15'and longitudes 34°33'and 34°42'where the NW Atiya regional dyke crosses the area and is horizontally displaced by NE strike-slip faults. The first-motion directions of four large shocks, including the largest, at both UNJ and HLW stations are in agreement with a strike-slip mechanism at a NE-trending fault in this area. The b value showed a temporal increase with time from 0.43 to 0.69. This, together with other geological and geophysical observations may indicate that subsurface magmatic activity has affected the stressed crustal rocks, thus triggering earthquake activity.
This swarm and historical information indicate that the Gulf of Aqaba-Dead Sea Jordan transform is characterized by both swarm and foreshock-aftershock types of seismic activity and therefore the relatively large proportion of non-seismic slip along the southern part of this transform may actually be higher if swarm-type activities are considered.  相似文献   

3.
Seismic reflection profiles from the Murray Ridge in the Gulf of Oman, northwest Indian Ocean, show a significant component of extension across the predominantly strike-slip Indian–Arabian plate boundary. The Murray Ridge lies along the northern section of the plate boundary, where its trend becomes more easterly and thus allows a component of extension. The Dalrymple Trough is a 25 km wide, steep-sided half-graben, bounded by large faults with components of both strike-slip and normal motion. The throw at the seabed of the main fault on the southeastern side of the half-graben reaches 1800 m. The northwest side of the trough is delineated by a series of smaller antithetic normal faults. Wide-angle seismic, gravity and magnetic models show that the Murray Ridge and Dalrymple Trough are underlain by a crystalline crust up to 17 km thick, which may be continental in origin. Any crustal thinning due to extension is limited, and no new crust has been formed.
We favour a plate model in which the Indian–Arabian plate boundary was initially located further west than the Owen Fracture Zone, possibly along the Oman continental margin, and suggest that during the Oligocene–Early Miocene Indian Ocean plate reorganization, the plate boundary moved to the site of the present Owen Fracture Zone and that motion further west ceased. At this time, deformation began along the Murray Ridge, with both the uplift of basement highs, and subsidence in the troughs tilting the lowest sedimentary unit. Qalhat Seamount was formed at this time. Subsequent sediments were deposited unconformably on the tilted lower unit and then faulted to produce the present basement topography. The normal faulting was accompanied by hanging-wall subsidence, footwall uplift, and erosion. Flat-lying recent sediments show that the major vertical movements have ceased, although continuing earthquakes show that some faulting is still active along the plate boundary.  相似文献   

4.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

5.
利用NCEP/NCAR再分析春季逐月平均位势高度、风、温度、垂直速度等物理量的格点资料,通过图形分析技术进行天气系统识别,建立3类宁夏春季干旱多层次环流概念模型,并对各类型主要影响因子进行特征量对比计算,得出了宁夏春季干旱监测预测定量化指标。在如下条件下,宁夏易发生春季干旱:(1)500 hPa东亚大槽位于120°-140°E,其中位于120°-130°E间时发生的干旱强度最大,偏东或偏西则强度减弱;(2)500 hPa中亚脊强盛、完整且位于60°-100°E,位于80°E附近干旱强度最大,弱脊分裂或偏西则干旱强度较弱;(3)副热带高压呈带状,脊线位于20°N以南且西脊点位于110°E以西时;(4)850 hPa偏南气流强度较弱,北界位于27°N以南时;(5)700 hPa判定区域(30°-50°N、90°-110°E)内干区控制范围比率达45%时;(6)500 hPa判定区域(30°-50°N、90°-110°E)内下沉气流区占区域面积的比率≥75%,700 hPa下沉气流区占区域面积的比率≥60%,且宁夏北部受下沉气流区控制。利用图形分析法对宁夏春季干旱进行监测预测,对2010年和2011年春季气候趋势进行拟合检验,效果良好。  相似文献   

6.
The East African Rift System (EARS) exerted a major influence on river drainage basins and regional climate of east Africa during the Cenozoic. Recent studies have highlighted an offshore branch of the EARS in the western Indian Ocean, where the Kerimbas Graben and the Davie Ridge represent its sea floor expression. To date, a clear picture of the impact and timing of this EARS offshore branch on the continental margin of the western Indian Ocean, and associated sediment dispersal pathways, is still missing. This study presents new evidence for four giant canyons along the northern portion of the Davie Ridge offshore Tanzania. Seismic and multibeam bathymetric data highlight that the southernmost three canyons are now inactive, supra-elevated relative to the adjacent sea floor of the Kerimbas Graben and disconnected from the modern slope systems offshore the Rovuma and Rufiji River deltas. Regional correlation of dated seismic horizons, integrated with well data and sediment samples, proves that the tectonic activity driving the uplift of the Davie Ridge in this area has started during the middle-upper Miocene and is still ongoing, as suggested by the presence of fault escarpments at the sea floor and by the location and magnitude of recent earthquakes. Our findings contribute to placing the Kerimbas Graben and the Davie Ridge offshore Tanzania in the regional geodynamic context of the western Indian Ocean and show how the tectonics of the offshore branch of the EARS modified the physiography of the margin, re-routing the deep-water drainage network since the middle Miocene. Future studies are needed to understand the influence of changing sea floor topography on the western Indian Ocean circulation and to evaluate the potential of the EARS offshore tectonics in generating tsunamigenic events.  相似文献   

7.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

8.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

9.
Summary. The Azores—Biscay Rise is a roughly linear north-east—south-west trending feature rising 1500–3000m above its surroundings, which extends from about 4°N, 1°30'W towards the Azores. Its south-western termination is near 40°30'N, 21°30'W. About halfway along its length the Rise intersects the WNW-trending King's Trough. In 1978 a set of bathymetric, magnetic, gravity, GLORIA and seismic reflection and refraction data were obtained in the vicinity of the Rise. Together with earlier data these observations suggest that: (1) there has been no substantial post-emplacement tectonic activity, with the possible exception of the construction of some volcanic seamounts at the south-western end of the Rise, and (2) the Rise is underlain by a low-velocity (low-density) lower crust and is in isostatic equilibrium.
The Rise can be convincingly shown to be the eastern half of a pair of ridges formed by abnormal crustal generation at the Mid-Atlantic Ridge crest between the times of anomalies 33 and 24 (76–56 Ma ago). The western counterpart of the Rise includes Gauss and Milne seamounts in the Newfoundland Basin.
Magnetic anomaly 31 passes uninterruptedly across the Rise and therefore hypotheses that the northern part of the Rise was the site of a Cenozoic transform fault or subduction zone are not supported by our data. It is speculated that King's Trough was linked to the North Spanish Trough by an early Cenozoic east—west transform fault across the northern Iberia Abyssal Plain. This plate boundary became inactive about the middle of the Oligocene epoch.  相似文献   

10.
Summary. An inversion of ISC travel-time data from selected earthquakes in the distance range 30°-90° to 53 stations in Central Europe has been used to model velocity down to 600 km depth. The model explains 0.1–0.2s of the residuals, as for other array studies, leaving 0.5 s unexplained as noise. The uppermost 100 km of the mantle and crust contains inhomogeneities that correlate remarkably well with the geology. This may be due to deep-seated thermal anomalies or, in some areas, to delays introduced by passage of the rays through sedimentary cover. The deeper anomalies are smaller and unrelated to those in the lithosphere, which suggests that the asthenosphere is decoupled from the rigid lithosphere. The structure at 600 km depth is again quite inhomogeneous and might be due to undulations of the 650 km discontinuity. The models show some suggestion of a high velocity slab trending from east to west beneath the Alps.  相似文献   

11.
Summary. Rock stress measurements in Iceland show maximum horizontal compression perpendicular to the trend of Reykjanes Ridge crest and of its extension, the active volcanic zone of Iceland. Fault-plane solutions of dormant stage earthquakes are consistent with the measured stress orientations, but strike—slip earthquakes associated with volcanic surges and some earthquake swarms in active geothermal areas exhibit apparent reversals of mechanism and are here defined as 'stress-discordant' in the sense that they yield deduced stress orientations 90° from the regional stress field as determined by hydrofracturing and strain relief methods. It is proposed, supported by comparison with the pore-pressure induced Denver earthquakes, that the 'stress-discordant' volcanic earthquakes are triggered by increased pore pressure and probably involve stick-slip motion similar to that reported for some laboratory tests of the pore pressure effect, characterized by gradual onset and sudden stopping of each slip episode. The question is raised as to whether stress-discordant earthquakes are dominated by a stopping phase or terminal shock with consequent reversal of the deduced shear couple. A possible stopping mechanism is suggested: the dilatant stiffening of fault gouge during shear.
It is proposed that direct measurements of stress orientation be made by hydrofracturing tests at other places along the mid-ocean ridge crest and on the margins of the Red Sea and East African rifts. The Icelandic stress data indicate the need for sceptical re-examination of some fundamentals of plate tectonics theory.  相似文献   

12.
Summary. Analysis of data from events well recorded by ocean-bottom seismographs on the Mid-Atlantic Ridge near 45° N, indicates that most activity is centrally placed beneath the median valley floor. The results suggest a lithospheric thickness of 8 km under the median valley floor. The spatial and temporal behaviour of the largest swarm observed is indicative of active magma intrusion.  相似文献   

13.
Shear-wave splitting is analysed on data recorded by the High Resolution Seismic Network (HRSN) at Parkfield on the San Andreas fault, Central California, during the three-year period 1988-1990. Shear-wave polarizations either side of the fault are generally aligned in directions consistent with the regional horizontal maximum compressive stress, at some 70° to the fault strike, whereas at station MM in the immediate fault zone, shear-wave polarizations are aligned approximately parallel to the fault. Normalized time delays at this station are found to be about twice as large as those in the rock mass either side. This suggests that fluid-filled cracks and fractures within the fault zone are elastically or seismically different from those in the surrounding rocks, and that the alignment of fault-parallel shear-wave polarizations are associated with some fault-specific phenomenon.
Temporal variations in time delays between the two split shear-waves before and after a ML = 4 earthquake can be identified at two stations with sufficient data: MM within the fault zone and VC outside the immediate fault zone. Time delays between faster and slower split shear waves increase before the ML = 4 earthquake and decrease near the time of the event. The temporal variations are statistically significant at 68 per cent confidence levels. Earthquake doublets and multiplets also show similar temporal variations, consistent with those predicted by anisotropic poroelasticity theory for stress modifications to the microcrack geometry pervading the rock mass. This study is broadly consistent with the behaviour observed before three other earthquakes, suggesting that the build-up of stress before earthquakes may be monitored and interpreted by the analysis of shear-wave splitting.  相似文献   

14.
Seismic reflection and GLORIA side-scan sonar data obtained on RRS Charles Darwin cruise CD64 reveal new information on the styles of deformation in the Gorringe Bank region, at the eastern end of the Azores–Gibraltar plate boundary. Previous studies suggest that Gorringe Bank was formed by the overthrusting of a portion of the African plate upon the Eurasian plate. The new seismic data show, however, that the most intensely deformed region is located south of Gorringe Bank, on the northern flanks of a NW–SE-trending submarine ridge which includes the Ampere and Coral Patch seamounts. The deformation is expressed as long-wavelength (up to 60  km), large-amplitude (up to 800  m) folds in the sediments and underlying acoustic basement, which in places are associated with one or more reverse faults, and as a fabric of short-wavelength folds (up to 3  km) with a NE trend. In contrast, the same sedimentary units when traced beneath the flanking plains are undeformed, except for some faults with a small throw (~30  m), some of which offset the seafloor. GLORIA data show that recent deformation is broadly distributed over the region. Structural trends rotate from 45° in the west to 70° in the east of the region, nearly perpendicular to the NW-verging plate motion vectors as determined from plate kinematic models. Flexure modelling suggests that a portion of Gorringe Bank has loaded 152  Ma oceanic lithosphere and that a maximum of 50  km of shortening has occurred at Gorringe Bank since the mid-Miocene. Our observations support a model in which there is no single plate boundary in the region, rather that the deformation is distributed over a 200–330  km wide zone.  相似文献   

15.
Summary. One hundred and eight deep-focus earthquakes occurring in the Indian region (6–37° N, 70–100° E) were originally selected for the study of P residuals (Paper I). Of these, 61 earthquakes were found suitable for analysing S residuals.
S times for this region are generally greater than J—B S times. Analysis of residuals reveals that anomalous regions are present both in the upper mantle as well as the lower mantle.  相似文献   

16.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

17.
Summary. Remanent magnetization directions of 32 dykes and lava flows sampled near Ayacucho, the Peruvian Andes revealed 14.2°± 5.5° counterclockwise rotation after the Neogene intrusion of this dyke swarm. Palaeo-magnetic results of these rocks and other palaeomagnetic evidences from the Central Andean Mesozoic rocks suggest relatively recent occurrence of the Andean oroclinal bending around the axis at the Peru-Chile border.  相似文献   

18.
Summary. A new set of 1×1° mean free-air anomalies in the Indian Ocean is determined on the basis of previously published free-air anomaly maps (Talwani & Kahle) and the most recent Lamont surface ship gravity measurements. The data are then used to compute a (total) 1×1° gravimetric Indian Ocean geoid. The computation is carried out by combining the Goddard Space Flight Center (GSFC) GEM-6 geoid and a difference geoid that corresponds to the differences between the set of 1×1° surface gravity values and the GEM-6 gravity anomalies. The difference geoid is highest over the Madagascar Ridge (+ 20 m) and lowest over the Timor Trough (-30 m). The total geoid is compared with GEOS-3 radar altimeter derived geoid profiles and geophysical implications are discussed.  相似文献   

19.
Summary. Over 80 earthquakes, exclusively from the Hindukush focal region, which were recorded at the Gauribidanur seismic array (GBA) have been used in this study. These events have similar epicentral distances and a narrow azimuthal range from GBA but varying focal depths from 10 to 240 km. A fault plane dipping steeply (75°) in the north-west direction and striking N 66° E has been investigated on the basis of the spatial distribution of earthquakes in two vertical planes through 68° E and 32° N. Short period P -wave recordings up to 30 s were processed using the adaptive cross-correlation filtering technique. Slowness and azimuthal anomalies were obtained for first arrivals. These anomalies show positive as well as negative bias and are attributed to a steep velocity gradient in the upper mantle between the 400–700 km depth range where the seismic rays have their maximum penetration. Relative time residuals between the stations of GBA owe their origin very near to the surface beneath the array. A search of the signals across the array revealed that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and the scattering confined to the crust—upper mantle near source are mainly responsible for the complexity of the Hindukush earthquakes as the transmission zone of the ray tubes from turning point to the recording station is practically the same.  相似文献   

20.
A high-quality aeromagnetic survey of northern Brittany (line spacing 250  m; flight elevation 150  m) has been used to delineate the Lower Carboniferous St Malo dyke swarm in detail. The dyke swarm fans at its northern and southern ends, and is affected by N60° sinistral transcurrent faults. After restoration of these offsets, the full structure trends in a N–S direction. Small dykes are not imaged, and only one-third of the swarm is evidenced by magnetism. Gravity and magnetic modelling shows that the swarm overlies a single N–S elongated magma chamber.
  The distribution of K max inclinations of anisotropy of magnetic susceptibility (AMS) suggests that the dykes display a fanning magma flow in section. Computed K max inclinations are usually shallower than the measured geological dips, probably because the flow becomes more disturbed as the dyke becomes shallower. We observe that the mean susceptibility values increase when the magma flow is steeper than about 70°.
  A detailed cross-section of St Briac dyke, which is part of the St Malo dyke swarm, reveals that the main carrier of magnetization is magnetite in the centre of the dyke and magnetite + maghaemite on its rims. The emplacement of the St Malo dyke swarm could have been contemporaneous with the N60° shearing which displaced the dyke swarm by about 20  km. The dyke swarm is cut at its southern end by an E–W-orientated fault which probably acted during Late Carboniferous times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号